
EPJ Web of Conferences 94, 04020 (2015)
DOI: 10.1051/epjconf/20159404020
c© Owned by the authors, published by EDP Sciences, 2015

Mesoscale numerical modeling of plastic bonded explosives
under shock loading

Hailin Shang, Feng Zhaoa, Guangfu Ji, and Hua Fu

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of
Engineering Physics, Mianyang 621999, Sichuan, China

Abstract. Mesoscale responses of plastic bonded explosives under shock loading are investigated using material point method
as implemented in the Uintah Computational Framework. The two-dimensional geometrical model which can approximately
reflect the mesoscopic structure of plastic bonded explosives was created based on the Voronoi tessellation. Shock loading for the
explosive was performed by a piston moving at a constant velocity. For the purpose of investigating the influence of shock strength
on the responses of explosives, two different velocities for the piston were used, 200 m/s and 400 m/s, respectively. The simulation
results indicate that under shock loading there forms some stress localizations on the grain boundary of explosive. These stress
localizations lead to large plastic deformations, and the plastic strain energy transforms to thermal energy immediately, causing
temperature to rise rapidly and form some hot spots on grain boundary areas. The comparison between two different piston
velocities shows that with increasing shock strength, the distribution of plastic strain and temperature does not have significant
change, but their values increase obviously. Namely, the higher the shock strength is, the higher the hot spot temperature will be.

1. Introduction

Plastic bonded explosives are heterogeneous and often
consist of a mixture of polycrystalline explosives and
binder materials. Thus, these heterogeneous explosives
exhibit obviously different mechanical, thermal and
chemical behaviour compared to pure explosives because
of the discontinuity at mesoscale which associated with
the granular nature of the explosive constituents. Under
shock loading, significant temperature and pressure rise
at the defect areas of these heterogeneous explosives,
forming a lot of hot spots. Thereafter, the chemical
reaction and combustion come up, finally the detonation
occurs. Because of the difficulties in experimental study
at mesoscale, numerical simulation is an available way
to investigate the mesoscale response of explosives under
shock loading.

Menikoff [1] studied the mechanism for hot-spot
formation occurs as a shock wave passes over a high-
density impurity using a two-dimensional hydrodynamic
simulation performed with the xRage code. The results
pointed out that interactions generated by reflected waves
from neighboring beads can significantly increase the
peak hot-spot temperature when the beads are suitably
spaced. Baer [2] studied the mesoscopic processes of
consolidation, deformation, and reaction of shocked
porous energetic materials using the shock physics code,
CTH. Numerical simulations indicate that “hot-spots”
are strongly influenced by multiple crystal interactions.
Conley et al. [3] investigated the shock compaction in
granular porous and cast HMX using a multi-material,
two dimensional Eulerian hydrocode, RAVEN. In their
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simulation results, no significant particle size effect upon
HMX temperature was observed in either of the two
compacts. But the presence of the binder significantly
altered the response of intragranular voids.

In this paper, we studied the shock responses of
plastic bonded explosives using material point method as
implemented in the Uintah Computational Framework [4].

2. Material point method
The material point method (MPM) was described by
Sulsky et al. [5,6] as an extension to the FLIP (Fluid-
Implicit Particle) method of Brackbill [7], which itself
is an extension of the particle-in-cell (PIC) method of
Harlow [8].

The basic idea of MPM is: objects are discretized
into particles, or material points, each of which carries
the history-dependent state variables such as stresses and
strains, as well as mass and kinematic variables such
as position, velocity and acceleration [5,9]. A regular
background mesh covers the computational domain. The
cells of the grid behave like finite elements, and the grid
points behave like finite element nodes. During each time
step, the mass and kinematic variables at the material
points are mapped to the grid, where momentum equations
are solved. The acceleration and velocity at the grid are
then mapped back to the material points. State variables
are then calculated at the material points using the updated
kinematic variables.

The use of a regular background grid in MPM has a
lot of computational advantages. Computational of spatial
gradients is simplified. For heterogeneous materials like
explosives, MPM is more suitable for solving problems
involving contact between colliding objects, cracks, large

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20159404020

http://dx.doi.org/10.1051/epjconf/20159404020
http://creativecommons.org/licenses/by/4.0/
http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20159404020


EPJ Web of Conferences

deformations and other high velocity problems. It has an
advantage over FEM in that the use of the regular grid
eliminates the need for doing costly searches for contact
surfaces [10].

The discrete momentum equation for MPM is given as:

ma = Fext−Fint (1)

where m is the mass matrix, a is the acceleration vector,
Fext is the external force vector, and Fint is the internal
force vector resulting from the divergence of the material
stresses

The solution begins by accumulating the particle state
on the nodes of the computational grid, to form the mass
matrix m and to find the nodal external forces Fext , and
velocities, v. These quantities are calculated at individual
nodes by the following equations, where

∑
represents a

summation over all particles:

mi =
∑

p

Sipm p (2)

vi =

∑
p

Sipm pvp

mi
(3)

Fext
i =

∑

p

SipFext
p (4)

and i refers to individual nodes of the grid. m p is the
particle mass, vp is the particle velocity, and Fext

p is the
external force on the particle. Sip is the shape function of
the i th node evaluated at x p.

Fint is computed at the nodes as a volume integral of
the divergence of the stress on the particles, specifically:

Fint
i =

∑

p

Gi pσpvp (5)

where Gi p is the gradient of the shape function of the i th

node evaluated at x p, and σp and vp are the time n values
of particle stress and volume respectively.

Using Eq. (1) the momentum equations for grid nodes
are solved, and then mapped back to the material points.
State variables are finally calculated at the material points
using the updated kinematic variables.

3. Results and discussion
Two-dimensional simulation model for plastic bonded
explosives is shown in Fig. 1. The model was created based
on the Voronoi tessellation. It has the same width and
length of 10 mm. There are 1024 (32 × 32) HMX grains in
total, which contain 939,999 material points. And there are
also 60,001 binder points. Considering the density of HMX
is 1.9 × 103 kg/m3 and for binder is 1.1 × 103 kg/m3, we
can get the mass fraction for both constituents is 96.44%
and 3.56%, respectively.

An elastic-plastic constitutive-model with a Mie-
Gruneisen equation-of-state is used for HMX, and a
hyper-elastic constitutive-model is used for binder. The
properties for HMX and binder are given in Table 1. Where
S1–S3 are the coefficients of the slope of the us–up curve,
us is shock velocity, and up is particle velocity.

Figure 1. Simulation model for plastic bonded explosive.

Table 1. Parameters for HMX and binder.

HMX binder
Density 1.90E3 1.10E3
(kg/m3)

Shear modulus 7.20E9 2.70E8
(Pa)

Bulk modulus 10.2E9 3.65E9
(Pa)

Yield strength 3.70E8 —–
(Pa)

Sound speed 2901.0 —–
(m/s)

Gruneisen gamma 1.1 —–
S1 2.058 —–
S2 0 —–
S3 0 —–

3.1. Low shock strength results

Shock loading is performed by a piston moving at a
constant velocity from the left boundary to right. The
top and bottom boundaries are free slip boundaries. The
right boundary is a free surface. In this section, the piston
velocity is set to 200 m/s. As shock wave reaches the free
surface, the effective stress, plastic strain and temperature
distribution of the explosive are shown in Figs. 2–4 (only
show the result for HMX grains, not contain the binder).

The results shown in Figs. 2–4 indicate that under
shock loading there forms a lot of stress localizations at the
interfaces between HMX grains and binder layers. These
stress localizations lead to large plastic deformations.
Simultaneously, the plastic strain energy transforms to
thermal energy, causing the temperature to rise rapidly and
form hot spots on grain boundary areas.

3.2. High shock strength results

To increase the shock strength, a higher velocity of 400 m/s
for the piston is used. The model properties and other
simulation conditions are the same as in Sect. 3.1. The
effective stress, plastic strain and temperature distribution
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Figure 2. Effective stress distribution for the plastic bonded
explosive as shock wave reaches the free surface (piston velocity
is 200 m/s).

Figure 3. Plastic strain distribution for the plastic bonded
explosive as shock wave reaches the free surface (piston velocity
is 200 m/s).

Figure 4. Temperature distribution for the plastic bonded
explosive as shock wave reaches the free surface (piston velocity
is 200 m/s).

of the explosive as shock wave reaches the free surface are
shown in Figs. 5–7 (also only show the result for HMX
grains, not contain the binder).

Results shown in Figs. 5–7 indicate that with
increasing shock strength, the distributions of stress,
plastic strain and temperature do not have significant
changes, but their values do have large increases. Thus,
a conclusion can be summarized as, the higher the shock
strength is, the higher the hot spot temperature will be.

Figure 5. Effective stress distribution for the plastic bonded
explosive as shock wave reaches the free surface (piston velocity
is 400 m/s).

Figure 6. Plastic strain distribution for the plastic bonded
explosive as shock wave reaches the free surface (piston velocity
is 400 m/s).

Figure 7. Temperature distribution for the plastic bonded
explosive as shock wave reaches the free surface (piston velocity
is 400 m/s).

4. Conclusion
In this paper, mesoscale responses of plastic bonded
explosives under shock loading are investigated using
material point method. Simulation results show that under
shock loading there forms a lot of stress localizations at
the interfaces between HMX grains and binder layers. And
these stress localizations lead to large plastic deformations.
Simultaneously, the plastic strain energy transforms to
thermal energy, causing the temperature to rise rapidly and
form hot spots on grain boundary areas. With increasing
shock strength, the distributions of stress, plastic strain
and temperature do not have significant changes, but their
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values do have large increases. We can conclude that,
the higher the shock strength is, the higher the hot spot
temperature will be.
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