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Summary. — The article explains the operation of power systems from the point
of view of physics. Physicists imagine things, rather than in terms of impedances
and circuits, in terms of fields and energy conversions. The account is concrete and
simple. The use of alternating current entails the issue of reactive power. Reac-
tive power consists of energy that oscillates between electrical and magnetic fields,
it flows on top of the active power which carries the useful energy. The control
of active and reactive power is essential for the power system’s reliable operation.
The frequency of a power system is the same everywhere. The stability of the fre-
quency indicates that generation and demand of active power are equal, a decline
in frequency indicates a lack of generation relative to the demand. Adapting the
electrical power injected into the system is the way of frequency control. Because
of the parasitic inductances and capacitances of overhead lines, cables, and trans-
formers, the voltage at different locations of the power system depends on the load.
The voltage is regulated by the combined action of generator excitation, transformer
tap changers and series compensation in order to provide consumers with a stable
voltage supply. The integration of solar cells and wind turbines into the power sys-
tem poses some challenges. But the power system is able to accommodate large
amounts of fluctuating renewable power generation if the right complementary mea-
sures are taken.
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1. – Introduction

A system is more than the sum of its parts. The power system is a good example
of this statement. It has properties — frequency and voltage stability, flexibility of the
power flow, continuous availability — that emerge from, but go beyond, the properties
of the power system components.

In earlier articles [1, 2] the focus was on the physics of the components of the power
system, what shape they take, what materials they are made of, and for what physical
reasons. In this article we focus on the interaction of the components and their control.
How can a system composed of so many components provide a stable frequency and
a stable voltage even though the power flow within the lines adapts all the time to the
demand of the loads, that are switched on and off without any consideration of the power
system’s condition? This is the question we try to answer. What is common with the
earlier articles is that again a physicist’s perspective is adapted. Explanations use energy
considerations rather than equivalent circuit impedances, and we treat the topic in an
easily accessible way.

The next section gives a condensed description of the four main types of components
that make up any power system. We move on to the definition of active and reactive
power, that is essential for understanding the power system operation. In the core part
of the article we explain frequency and voltage control. At the end, there is an outlook
on the impact of renewables integration on the power system operation.

There are good textbooks that treat the subject in the electrical engineering language.
For a recent concise introduction, see ref. [3]. A classic and elaborate treatment is
provided in ref. [4].

2. – Power system components

Power systems are made from four main types of components. It is instructive to
recall how the geometrical shape and the physical properties of the components follow
from the functions required for the power system as a whole [1].

High-voltage overhead lines enable long distance power transmission with low losses.
The voltage needs to be high to keep the losses at acceptable levels, but the high voltage
requires large insulation distances — towers — and it imposes the need for alternating
current because alternating current can be transformed using the principle of magnetic
induction while direct current cannot.

Transformers allow for adequate voltage levels for generation, transmission, distribu-
tion, and consumption. The alternating current is typically generated, again with the
help of magnetic induction, in synchronous generators that convert mechanical to elec-
trical energy. They play a crucial role in power system control as we will learn below.
The fourth type of component, indispensable for power system operation, is the circuit
breaker. Circuit breakers can interrupt short circuits and disconnect grid segments with
a fault. Without circuit breakers the number and duration of power system blackouts
would be unsatisfactory.
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It is advantageous to provide alternating current with three balanced, symmetric
phases, each carrying a sinusoidal current of the same magnitude and frequency, but
their zero crossing being displaced by one third of the period against each other. Such
arrangement provides a steady, time independent, power flux from alternating current,
and the return conductors of each phase can be omitted, thus saving half of the conductors
material cost.

3. – Active and reactive power

For good reasons most introductory textbooks on power systems start with the dis-
tinction between active and reactive power flow. This is a conceptual distinction that
divides a single physical entity, the average power flow along a power line, into two
notional components.

Power plants convert other forms of energy into electrical energy and feed it into the
power system with the generator, this is the active component of the power. It travels
through the power system and is consumed by loads which convert it into many useful
forms of energy. To transport active power from the many generation sites to the many
loads is the sole purpose of power systems.

In contrast to this, reactive power is parasitic. It is a consequence of the fact that
electromagnetic fields are able to transmit energy because they are a form of energy
themselves. The energy that they are about to transmit is stored temporarily in electric
fields that fill any space between conductors on different voltage and magnetic fields that
surround any current carrying conductor. From the choice of alternating currents for
power transmission follows thus an inconvenience: the issue of reactive power. Reactive
power is the power that oscillates typically between a generator and the magnetic fields
surounding overhead lines, transformers, or motors.

Figure 1 shows the traditional way of presenting the concepts of active and reactive
power [5]. The upper part displays the instananeous line voltage (blue solid line) and the
instantaneous current (red solid line) of a single phase of a power system. In this case,
the current is lagging in time relative to the voltage with a phase angle φ. The total
current can be understood as the sum of the active current component (red dotted line)
that has no phase shift relative to the voltage and the reactive current (red dashed line)
that is completely out of phase.

The lower part of the figure diplays the decomposition of the instantaneous single-
phase power into components. The active power oscillates with twice the voltage fre-
quency between its maximum value and zero, but never turns negative. The reactive
power oscillates with twice the voltage frequency around zero. Its average is zero.

The understanding of active and reactive power is sometimes obscured by the treat-
ment of the topic for three balanced, symmetric phases. Here the sum of the instantenous
power over the three phases is constant (time-independent), and “we are tempted to as-
sume that the reactive power is of no importance in a three-phase system” [5]. But this
is not the case. While the reactive power flow in single-phase circuits corresponds to the
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Fig. 1. – Upper part: Voltage (blue line) and decomposition of the total current (red solid line)
into active current (red dotted line) and reactive current (red dashed line) of a single phase
of a power system in arbitrary units. Lower part: Decomposition of the instantanous single-
phase power (black solid line) into active power (black dotted line) and reactive power (black
dashed line).

buildup of electric and magnetic fields, the reactive power flow in three-phase circuits
corresponds to the rearrangement of these fields.

The physical nature of active and reactive power is best seen by plotting the energy
flux density associated with it. This is the Poynting vector. Figure 2 shows a side
view of the three-dimensional Poynting vector envelopes of purely active power transfer
(left) and purely reactive power transfer (right) in a balanced three-phase overhead line
at different instants of the half period. Such graph was originally presented in ref. [6].
The overhead lines in this illustration carry power from the bottom to the top of the
page. The three phases are spaced 10 meters apart, such as about typical for 380 kilovolt
transmission lines. For better visualisation, the width of the Poynting vector envelope
has been magnified by a factor of five. In reality, the major part of the energy flux density
is confined to a radius of about 0.3 meter around the conductor.
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Fig. 2. – Side view of Poynting vector envelopes in a balanced three-phase overhead line at
different instants of the half period (frequency of 50 Hertz). The individual phases of the 380 kV
circuit are 10 meters apart. For visualization, the radial width of the Poynting vector envelope
was magnified by a factor of five. a) Purely active power flow. b) Purely reactive power flow.
After ref. [6].

A first observation is that power does flow next to, but around the overhead lines. This
is because the interior of conductors is on the same voltage and hence free of electrical
fields. Second, as a consequence of its definition with a cross-product of electric and
magnetic field, �S = �E × �H, the Poynting vector is strictly oriented in the direction of
the overhead lines.

For both, active and reactive power transfer, the flux oscillates in each phase, and
the pattern rotates between the phases with a time shift of one sixth of the period. For
active power, in the left of the graph, it never goes into reverse direction.
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Fig. 3. – Left: Circuit representing a transmission line. Right: Phasor diagrams for active power
transfer (a, top) and reactive power transfer (b, bottom).

Reactive power, in the right of the graph, oscillates back and forth in each phase. It
is the power flux associated with the change of the energy stored in the electromagnetic
fields of the components downstream from the present location. Its average across the
three phases is zero, but it can not be exchanged between the three phases due to the
fixed orientation of the Poynting vector.

4. – Voltage angle and voltage drop

What determines the amount of power that is transferred by a transmission line? It
is the voltage angle, the phase angle between the voltage vector at the sending and the
voltage vector at the receiving end of the line. This is a consequence of the predominantly
inductive character of overhead lines.

The left-hand part of fig. 3 shows the simplest possible circuit representing a trans-
mission line. A synchronous generator supplies the sending end voltage VG; a load ZL

sees the receiving end voltage VL. The line is represented by the self-inductance L which
is a lumped notation for the combined action of Ampere’s and Faraday’s law. The chang-
ing magnetic field around the conductor induces a voltage along the conductor, that is
phase-shifted by 90 degrees relative to the current. This is the physical reason for the
importance of the voltage angle for the active power transfer.

As the active part of the transmitted power is carried by the current component that
is in phase with the voltage and as any current passing over an inductance induces a
voltage shifted by 90 degrees, sending end voltage and receiving end voltage must differ
by a phase angle rather than in magnitude. This is visualized in the phasor diagram in
the upper right of the figure. (Phasors are vectors in the complex plane that stand for
the sinusoidal voltages and currents.) The active current being parallel with the voltage
induces a voltage drop perpendicular to it and hence a shift in the angle.

In contrast to this, the magnitude of the voltage is mainly affected by the transfer of
reactive power. Again, this is a consequence of the inductive character of the overhead
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line and is visualized in the phasor diagram in the lower right of the figure. The reactive
current is perpendicular to the voltage, that is out of phase with it, it induces a voltage
drop parallel to it and hence a reduction in the voltage magnitude.

5. – Frequency control

The frequency of interconnected power systems serves implicitly as a sensor and a
communication signal. It helps to maintain the balance between the demand for power
and the power supply. Demand and supply have to be equal at all times, if the instana-
neous demand exceeds the supply, the system frequency will start to drop; if the demand
falls below the supply, the system frequency will start to rise. The system frequency is
to a good approximation the same in any point of the grid. It is a global quantity.

The stability of the frequency has its physical origin in the operation of the syn-
chronous generators. They provide the bulk of the power supplied to the grid. The
power that a single generator feeds into the grid is a function of the angle between the
rotor and the stator whose field is rotating with the grid frequency. The more mechanical
torque the turbine provides to the rotor shaft the larger will be the angle between rotor
and stator field and the more active power the generator will feed into the grid.

Synchronous generators are controlled according to their role agreed with the overall
system operator. Most generators contract the total of their output per each hour in the
day-ahead market. In that case, at the start of the hour, they ramp up the rotor angle
by increasing the mechanical power driving the rotor, for example by opening the valve
that governs the amount of steam expanding in the steam turbine which in turn requires
more steam to be produced and more fuel burnt in the steam generator. For the rest of
the hour they maintain this output.

A few of the power plants take the role of the frequency control and act as a reserve.
The power plants for primary frequency control act as a proportional controller and
increase their output in proportion to the negative deviation of the system frequency from
50 (or 60) Hertz. They also decrease their output in proportion to the positive deviation
of the system frequency. The primary frequency control ensures the stability of the
system frequency even though the actual instantaneous power demand will always deviate
somewhat from the predictions of the demand the day before. The primary frequency
control is also seized such that it is able to deal with sudden power plant outages.

Other power plants are contracted for secondary control. They act as an integral
controller and are powered up if the frequency is outside the target range for 30 seconds
or longer. In such situations the secondary control plants gradually replace the power
output of the primary control plants which are typically unable to maintain their output
for long. The tertiary control power plants are the last reserve for maintaining the system
frequency.

The exact balance between demand and supply is needed because the power system
stores only little energy. Even if the reactive power flow was of the same size as the
active power flow (which is not desirable because of the additional transmission losses)
the energy stored in the inductances would only be of the order of half a period, that
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is 10 milliseconds, times the rated power of the power system. The complete rotational
energy of the synchronous generators is typically about five seconds times the rated
power of the power system. Such fragile system can only be kept stable by exploiting the
property of the global system frequency to carry the information of the instantaneous
active power balance.

6. – Voltage control

The voltage is, in contrast to frequency, a local quantity. We understand from the
discussion in sect. 4 that any transfer of power, but particularly the transfer of reactive
power, leads to a drop in the magnitude of the voltage. To put it in another way,
the voltage is pulled down at a point of consumption and lifted upwards at a point
of supply. In physical terms, this is a consequence of the absorption of power in the
parasitic inductances of the power lines and other components and a consequence of the
dissipation of electric power in the resistance of the power lines. Standards require that
the voltage has to be maintained within plus and minus ten percent of the nominal value.

The voltage is primarily controlled by adjusting the rotor excitation of the syn-
chronous generators [2]. It is the major advantage of synchronous generators that they
can control the balance of active and reactive power independently from each other.
While supplying the scheduled active power, synchronous generators adjust the amount
of reactive power injected into or extracted from the system and thus control the voltage
at their point of supply.

The voltage drop limits the amount of power that can be transferred over a power
line. In fact it is the main limitation for transmission distances between 80 and 320
kilometers. Transmission over longer distances than 320 kilometers is constrained by the
stability of the voltage angle, transmission over shorter distances than 80 kilometers by
thermal considerations.

The transfer of reactive power from the point of supply is a burden for the power
system. It creates additional losses and leads to a deviation of the voltage from the
norm at the point of the load. For this reason, a variety of equipment types has been
devised to contribute to the local voltage control. Most intuitive is the use of capacitors
to compensate for the inductive nature of lines and transformers. Shunt capacitors are
connected between line and ground and serve as a storage of the energy used in the
reactive power flow. In contrast to the synchronous generators, shunt capacitors supply
the reactive power close to the load and avoid the transfer of reactive power over long
distances.

Series capacitors are connected in series with the line conductors and compensate
their inductance. They are typically lumped units, for example at the midpoint of a
high-voltage line, and are mounted on platforms isolated from the ground. A tunable
device for voltage control is the static VAR compensator. “VAR” stands for “volt ampere
reactive”, and this device is based on thyristor switches that dynamically connect and
disconnect capacitors and inductors to the line. A static synchronous compensator, or
STATCOM, achieves the voltage control with a minimum use of energy storage. It rotates
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reactive power between the three phases of the system, providing the shortcut for the
power flow that is prevented by the nature of the Poynting vector.

7. – Integration of renewables

At this point we may wonder how the grid can live with a massive integration of
power from wind and sun. The grid can live with it indeed — if the right complementary
measures are taken. One way to organize the topic is to go from short time scales to
long time scales of the implied energy storage. We start with voltage control, that is the
storage of energy in electromagnetic fields for half an oscillation period; and we end with
a comment on seasonal time patterns.

Wind turbines and photovoltaic cells are put into places that were not intended to
be points of supply at the moment of the power system planning. As we know from the
earlier discussion, the voltage at those places will be lifted upwards during the times of
power supply. A typical challenge is the occurence of overvoltages in residential neigh-
bourhoods with many solar panels during noon.

Fortunately the dominant factor in voltage control is the balance of reactive power,
and here a solar inverter can help. It can not only convert the direct current of solar
cells into alternating current and feed it into the grid, it can also supply these alternating
currents in such a way as to look to the grid like a synchronous generator. A suitably
dimensioned inverter is able to inject or absorb reactive power while doing his main job
and maximizing the active power supplied to the grid.

Wind and sun are also able to contribute to primary reserve. This is the time scale
of seconds and minutes. By operating slightly below the maximum output, additional
power is instantaneously available — though with the corresponding penalty for the total
energy yield.

Weather fronts move with typical speeds. The ramp rates of wind power and the
sudden shutdown of wind power during storms define the required amount of comple-
mentary fast gas power plants that are able to adapt their output on the time scales of
minutes.

Traditional fossil power generation is essentially a conversion from stored chemical
energy — gas, oil, coal — into electric power. In contrast to this, wind power and power
from the sun are a conversion from an instantaneous natural stream of available energy.
Their essence is the contingency and the fluctuation. The grid provides a statistical
averaging of this energy harvesting. The more extended the grid, the more pronounced
the averaging effect. This can be taken as a kind of virtual energy storage of the order
of one or two hours. Wind looses its spatial correlation completely beyond distances of
1500 kilometers.

Ultimately, for substantial proportions of power from wind and sun, multi-hour energy
storage is required. It is available, though costly, in the form of batteries and other forms
of energy conversion. The balancing of the seasonal patterns of sunshine requires the
integration of the power grid with flexible electricity loads such as industrial facilities for
the synthesis of solar fuels [7].
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