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Abstract. Ideas and methods of statistical physics have been shown to be useful for un-

derstanding some interesting problems in physical systems, e.g. universality and scaling

in critical systems. The interacting self-avoiding walk (ISAW) on a lattice is the simplest

model for homopolymers and serves as the framework of simple models for biopolymers,

such as DNA, RNA, and protein, which are important components in complex systems

in biology. In this paper, we briefly review our recent work on exact partition functions

of ISAW. Based on zeros of these exact partition functions, we have developed a novel

method in which both loci of zeros and thermodynamic functions associated with them

are considered. With this method, the first zeros can be identified clearly without am-

biguity. The critical point of a small system can then be defined as the peak position

of the heat capacity component associated with the first zeros. For the system with two

phase transitions, two pairs of first zeros corresponding to two phase transitions can be

identified and overlapping Cv can be well separated. ISAW on the simple cubic lattice is

such a system where in addition to a standard collapse transition, there is another freezing

transition occurring at a lower temperature. Our approach can give a clear scenario for

the collapse and the freezing transitions.

1 Introduction

The purpose of statistical physics is to understand the macroscopic properties of a many body system

from the interactions of the constituents of that system. It has been found that a simple model in

statistical physics can often be used to understand phenomena in complex systems [1].

The phenomena which have been widely studied by various methods of statistical physics are

phase transitions and critical phenomena [1, 2]. Universality and scaling are two important concepts

in the study of critical phenomena [1, 2]. The models which have been used to study various critical

systems include the Lennard-Jones model [3, 4], the Ising model [5–18], the dimer model [19–24], the

Potts model [25–33], the percolation model [34–39], and the interacting self-avoiding walks (ISAWs)

on lattices [40–49].
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In 1952, C. N. Yang and T. D. Lee proposed that the critical behavior of the gas-liquid system

can be represented by a lattice-gas model [12, 13], in which every lattice site is either occupied by an

atom or vacant. They showed that the lattice gas model is equivalent to the Ising model. According to

their theory, the gas-liquid systems and the three dimensional (3d) Ising model should be in the same

universality class and have the same set of critical exponents, a feature which was later confirmed by

Monte Carlo simulations of the 3d Ising model [17] and the molecular dynamics simulation (MD) [4]

of the Lennard-Jones system [3]. Yang and Lee [12, 13] also used the zeros of the partition function

in the complex fugacity plane to study the critical behavior of the Ising model. Such zeros have been

called Yang-Lee zeros or Lee-Yang zeros.

In 1965, M. E. Fisher [15] published a paper on the zeros of the canonical partition function in

the complex temperature plane of the square lattice Ising model. He used the exact partition function

of the Ising model on the square lattice by Kaufman [9] to show that the partition function zeros

are distributed on circles in the thermodynamic limit, and that the logarithmic singularity of the two-

dimensional Ising model is related to the zero distribution. Such zeros have been called Fisher zeros.

Using subgraph expansion for the partition functions of the Ising model, the Potts model, and a

lattice model of hydrogen-bonding in water molecules, Hu showed that the phase transitions of such

models can be related to percolation transitions of the corresponding correlated percolation models

[50–53]. Based on the connection between the q-state Potts model and a bond-correlated percolation

model, Hu and Chen developed a percolation renormalization group method [54, 55] based on geo-

metrical factors; Chen and Hu also developed a fast algorithm to calculate exact geometrical factors

for the q-state Potts model [56].

To obtain geometrical factors for larger lattices so that the calculated critical point and exponents

can be accurate, in early 1992 Hu proposed histogram Monte Carlo simulation methods (HMCSMs)

for percolation and phase transition models [57–59]. Instead of calculating the percolation probability

P, the mean cluster size S , etc, at various discrete bond or site occupation probabilities p for perco-

lation problems, Hu used the Monte Carlo simulation method to calculate the histograms of various

important quantities from which the geometrical factors, the percolation probability P, the mean clus-

ters S , and the existence probability Ep for finite systems at any bond or site occupation probability p
may be calculated [57, 58]. Using the percolation renormalization group method [54, 55] and the data

of histograms, one may obtain very accurate critical points and exponents, and the thermodynamic or-

der parameters for percolation and Potts models on the square lattice [57, 58]. The HMCSM had been

used to calculate finite-size scaling functions [60], the universal finite-size scaling functions [61] of

bond and site percolation models on two-dimensional lattices [62–65], and three-dimensional lattices

[66]; other Monte Carlo methods had been used to calculate universal finite-size scaling functions and

exponents for the two-dimensional Ising model [67–69].

Since the method of [58] can be used to calculate the partition function of the q-state Potts model,

F. Y. Wu proposed to Hu to use the method of [58] to calculate Fisher zeros [15] of the q-state Potts
model. Hu considered that the partition function zeros should be highly sensitive on the value of the

partition function and thus it is better to use exact partition functions of the q-state Potts model to

calculate their zeros. Hu invited Chi-Ning Chen to use exact partition functions obtained by the fast

algorithm of [56] to study such a problem. Chen, Hu and Wu found that such zeros are distributed on

the unit circle of the complex x = (eK − 1)/
√

q plane for the self-dual square lattices when the real

component of the zero is positive [70].

In the following, we will first introduce the model of interacting self-avoiding walks (ISAWs) on

lattices, review our results for exact partition functions of ISAWs on the simple cubic lattice [49], then

analyze physical quantities of ISAWs from zeros of the exact partition functions.
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Figure 1. Two examples of interacting self-avoiding walk on the square lattice with N = 17 monomers, and

m = 2 (left) and m = 6 (right) nearest-neighbor interacting bonds (contacts). The end-to-end distances dee of the

left and right figures are
√
2a and 2a, respectively, where a is the lattice constant of the square lattice.

2 Self-avoiding walks and interacting self-avoiding walks

On the basis of Flory theory about thermodynamics of high polymer solutions in 1942 [71], in 1947

Orr [40] first introduced the model of interacting self-avoiding walks on lattices and calculated exact

partition functions for the ISAWs with N monomers on the simple cubic lattice for 4 ≤ N ≤ 7 [40].

In 1954, F. T. Wall and L. A. Hiller [41] considered a self-avoiding walk model for the macro-

molecule on lattices and used a Monte Carlo method to calculate mean square end-to-end separation

〈r2n〉 of self-avoiding walks of length (step) n on simple cubic (sc) and tetrahedral lattices. They found

that for both lattices

〈r2n〉 ∼ n1.22. (1)

In 1955, Marshall N. Rosenbluth and Arianna W. Rosenbluth used a Monte Carlo method to cal-

culate the average extension of molecular chains [42]. The behavior of the chains of many molecules

was investigated by solving a restricted random walk (i.e. self-avoiding walk) problem on the sc lat-

tice and the square lattice. In the Monte Carlo simulations, a large number of chains were randomly

generated subject to the restrictions of no crossing or doubling back, to give the average extension of

the chain as a function of the chain length n denoting the number of links in the chain. A system of

weights was used to ensure that all the possible allowed chains were counted equally. Results for the

true random walk problem without weights were also obtained [42]. For the sc lattice, the result is

consistent with that of Eq. (1); for the square lattice, the exponent is 1.45 instead of 1.22 [42].

3 Exact partition functions for ISAWs on the SC lattice

The energy of an ISAW chain is defined as

E = m(−ε), (2)

where m is the number of nonconsecutive nearest-neighbor contacts, and −ε is the attractive contact
energy. Two examples of the ISAW on the square lattice with N = 17 monomers, and m = 2 (left)

and m = 6 (right) nearest-neighbor interacting bonds are shown in Fig. 1. The partition function of an

ISAW chain with N monomers is thus a polynomial of the variable x ≡ e
ε

kBT ∈ [1,∞).

ZN(x) =
∑

all ISAWs

e−
E

kBT =
∑

all ISAWs

(e
ε

kBT )m =

M∑
m=0

cm xm, (3)

where cm is the number of ISAWs with m contacts, and M is the largest contact number.
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The first exact enumeration of the ISAWs on the three-dimensional (3d) sc lattice with N = 7

monomers was done in 1947 [40]. The exact enumeration of the ISAWs on the sc lattice increased

from N = 13, 14 in the mid 1970s [43, 44] to N = 24 in 2012 [48]. In 2013, we extended the exact

enumeration to N = 27 [49]. In this paper, we will review our results [49].

To determine cm, we enumerate exhaustively all kinds of configurations of an ISAW chain on the

simple cubic lattice by a direct counting algorithm. The convention is the following. We place the

first monomer at the origin and place the second monomer at (1,0,0). This choice fixes the degree of

freedom of six degenerate directions. Then we consider the third monomer, which has five possible

places to locate, and so on. With this convention, Z2(x) = 1, Z3(x) = 5, and Z4(x) = 21 + 4x. Note
that our Z4(x) is smaller than the corresponding expression in [40] by a factor of 3. This is due to the

fact that we placed the second monomer at (1,0,0) while Orr placed the second monomer at (1,0,0) or

(0,1,0) or (0,0,1).

We run 25 jobs with 25 different initial configurations in Z4(x). Using such parallel scheme and

a PC cluster with 20 Intel Core i7-3770 CPUs running for one week, in 2013 we obtained the exact

partition functions of an ISAW chain with 27 monomers on the simple cubic lattice [49]:

Z27(x) = 2687260474091673 + 7691075547206304 x
+ 12274198909485704 x2 + 14606152416581560 x3

+ 14358037893362508 x4 + 12306110919546768 x5

+ 9516499325722368 x6 + 6796496980693704 x7

+ 4550820854771508 x8 + 2885259678896320 x9

+ 1744165069602240 x10 + 1010461758691808 x11

+ 562221500565624 x12 + 300795638155976 x13

+ 154635003353136 x14 + 76202267110608 x15

+ 35759386478012 x16 + 15853490105944 x17

+ 6575735170024 x18 + 2506371981136 x19

+ 861570292176 x20 + 261771793088 x21

+ 68806470816 x22 + 15180434800 x23

+ 2405834560 x24 + 507642624 x25

+ 12982400 x26 + 826768 x28

The coefficient of the last term is the number of compact conformations, i.e. Hamiltonian walks,

constrained in the 3 × 3 × 3 cube lattice. This number was obtained by Shakhnovich and Gutin [45]

in 1990, while all other coefficients have been determined for the first time by us in 2013.

The partition functions for N = 26 and N = 25 obtained by us [49] are:

Z26(x) = 659491406814189 + 1813267923015104 x
+ 2790018300205392 x2 + 3212920723903308 x3

+ 3062725217894032 x4 + 2549573160716404 x5

+ 1917674048256956 x6 + 1333810907000716 x7

+ 870465167239224 x8 + 537993317585876 x9

+ 317015288539108 x10 + 178862775590496 x11

+ 96794979121216 x12 + 50269993981144 x13

+ 24992072131964 x14 + 11840614971716 x15

+ 5289332987472 x16 + 2209119983128 x17

+ 848427850224 x18 + 292487024888 x19

+ 88490084496 x20 + 23946511760 x21
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Figure 2. Zeros of Z27 in complex (a) x and (b) T planes. In each case, 28 zeros are classified into three groups

with different symbols: dots for zeros associated with the collapse transition, squares for zeros associated with

the freezing transition and circles for the remaining zeros. Black dots and squares indicate the first zeros.

+ 4812285104 x22 + 937242640 x23

+ 162679840 x24 + 3122496 x26

Z25(x) = 161933965055557 + 426923334915032 x
+ 632297080298076 x2 + 703642817327208 x3

+ 649495283641228 x4 + 524321810777152 x5

+ 382938450200860 x6 + 258910496155904 x7

+ 164308920849032 x8 + 98708039285240 x9

+ 56482405763112 x10 + 30871738771112 x11

+ 16150787647092 x12 + 8062605596544 x13

+ 3829542725832 x14 + 1710592104736 x15

+ 710791796828 x16 + 270759134032 x17

+ 91832994896 x18 + 27069280608 x19

+ 6901322584 x20 + 1304780304 x21

+ 269097616 x22 + 11280704 x23

+ 3462176 x24

ZN(1) and ZN(0) for 14 ≤ N ≤ 27 are listed in Table 1. ZN(1) is the total number of self-avoiding

walks (SAWs) of a chain with N monomers (length N − 1) on the sc lattice. Exact values of such

numbers for the chain length from 1 (2 monomers) to 36 (37 monomers) were given in Table 1 of

[72]. Values of ZN(1) in Table 1 below are consistent with values of ZN in Table1 of [72]: N in the

former corresponds to N − 1 in the latter, and the value of the former is six times smaller than that of

the latter because we put the second monomer in a fixed direction of the sc lattice and the authors of

[72] put the second monomer in 6 possible directions of the sc lattice.

4 Decomposition of physical quantities by zeros of the exact partition
function

We used Mathematica to calculate M zeros of ZN(x).

ZN(x) = cM

M∏
k=1

(x − xk), (4)
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Figure 3. Zeros represented by dots in the first quadrant in Figs. 2(a) and 2(b) are plotted with corresponding

heat capacity components CV,k(x) and CV,k(T ). The darker dots indicate the first zeros. The darker diamonds

locate at xCmax
V,1
= 2.131 in 3(a) and TCmax

V,1
= 1.322 in 3(b), and xCmax

V,1
= 1/ln(TCmax

V,1
). Three peak heights are 1.44,

0.798, and 0.642 in both (a) and (b). From Fig. 2 of [49].

where cM is the ground state degeneracy, and xk is the k-th zero, i.e. root, of ZN(x). Both ε and kB can

be set to unity by changing the units of energy and temperature so that x = x(T ) = e1/T , and the ground
state energy is −M. Following the recipe of the canonical ensemble theory, all thermodynamical

functions can be expressed by a summation of contributions of partition function zeros [49].

A(x) = −T lnZN = − 1

ln x
(ln cM +

M∑
k=1

ln(x − xk)), (5)

S (x) = −∂A
∂T
=

M∑
k=1

(ln (x − xk) − xln x
(x − xk)

), (6)

U(x) = A + TS = −x
M∑

k=1

1

(x − xk)
, (7)

CV (x) =
dU
dT
= −x(ln x)2

M∑
k=1

xk

(x − xk)2
. (8)

Since ZN(x) is a polynomial of x with positive coefficients, its roots appear as complex conjugate

pairs, except very few roots located on the negative real axis [12]. For every complex or real xk,

1

2

(
xk

(x − xk)2
+

x∗k
(x − x∗k)2

)
= Re

(
xk

(x − xk)2

)
=

(Re(xk)|xk |2 − 2|xk |2x + Re(xk)x2)
(|xk |2 − 2Re(xk)x + x2)2

and the heat capacity is given by

CV (x) =
M∑

k=1

CV,k(x) ≡
M∑

k=1

[ − x(ln x)2
Re(xk)|xk |2 − 2|xk |2x + Re(xk)x2

(|xk |2 − 2Re(xk)x + x2)2
]
.

(9)
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Thus the heat capacity CV (x) is decomposed into components CV,k(x) which are real functions of the

real argument x and contributed by zeros xk. Or simply speaking, each zero xk carries a heat capac-

ity component CV,k(x). Although all thermodynamical functions are singular at zeros, the response

function CV (x)/N will diverge as zeros approach the positive real axis. All these thermodynamical

functions may also be suitable for our analysis, but in this paper we only focus on using partition

function zeros and CV (x) to analyze the critical phenomena of the 3d ISAWmodel. We will show that

{CV,k(x)}k=1,M provide additional useful information in the analysis of critical phenomena.

Figure 2 shows the partition function zeros with two different variables. Figure 2(a) is the figure

with the variable x, and Figure 2(b) are produced from Figure 2(a) by direct variable transformations

T = 1/ln(x). The purpose of putting these two zero diagrams together is to show that the patterns of

partition function zeros in small systems are quite different when different variables are used. Because

the loci of zeros change from one variable to another, the statement based only on the loci of zeros

may be misleading. For example, the first zero is usually defined as the zero closest to the real axis.

This definition is ambiguous in small systems since the zero closest to the real axis may become the

farthest after the transformation of variables. In Figures 2(a) and 2(b), the pairs of the black dots are

the same zeros because they can transform to each other. The black dots in Figure 2(a) look like the

first zeros, while the black dots in Figure 2(b) don’t look like the first zeros at all.

The ambiguity of identifying the first zeros can be easily solved with the heat capacity component

CV,k. Figures 3(a) and 3(b) show the zeros represented by dots in the first quadrant in Figures 2(a)

and 2(b), respectively, with their corresponding CV,k. In both Figures 3(a) and 3(b), the darker curves

correspond to the darker dots, the lighter curves with CV,k peak height 0.798 correspond to the middle

lighter dots, and the lighter curves with the peak height 0.642 correspond to the leftmost lighter

dots. To avoid using too many symbols, we adopt the shorthand notation: CV (T ) ≡ CV (x(T )) and
CV,k(T ) ≡ CV,k(x(T )), where x(T ) = e1/T . The diamonds indicateCV,k’s peak positions, xCmax

V,k
and TCmax

V,k
.

By definition, the CV,k’s peak height is CV,k(T = TCmax
V,k
) = CV,k(x = xCmax

V,k
), and TCmax

V,k
= 1/ln(xCmax

V,k
).

Because the darker curve has the largest peak, i.e. its corresponding CV,k contributes significantly to

the whole CV , one may define the darker zero to be the first zero. By naive consideration, this largest

peak is due to the smaller (x − xk)
2 term in the denominator of CV,k when xk is getting closer to the

real axis. In small systems, nevertheless, it’s not always the case. In Figure 2(b), the black dot is not

the closest point to the real axis, but its corresponding CV,k has the largest peak, therefore it can still

be identified as the first zero. Obviously this definition based on CV,k for the first zero is independent

of the variable used. The positions of darker diamonds now can be denoted by xCmax
V,1

and TCmax
V,1
.

5 Collapse and freezing transitions

A 3d ISAW chain undergoes a collapse transition and another freezing transition as temperature

changes [47]. Here the “transition” point for finite systems is defined as the point where the heat

capacity has a peak. According to the scenario proposed in [12, 13, 15], the partition function zeros of

a 3d ISAW chain would approach the real axis at two different places, while the heat capacity has two

peaks. However, in small systems, these two peaks sometimes overlap with each other. In Figure 4,

the heat capacity CV (T ) of an ISAW chain with 27 monomers is illustrated as the black curve, which

had been plotted in [47] and [73] by the improved pruned-enriched-Rosenbluth method (PERM) [74]

and the Wang-Landau method [75]. This CV curve is a typical one observed frequently in small sys-

tems [47, 76], where a peak and a shoulder indicate that there are more than one transition. In this

situation, CV decomposition shows its value. In Figure 4, CV,k(T ) is shown together with CV (T ). The
dotted curve indicates the heat capacity component contributed by the first zeros associated with the

freezing transition. The dashed curve indicates the heat capacity component contributed by the first
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Figure 4. The heat capacity CV (T ) (black curve) of an ISAW chain with 27 monomers. The dotted, dashed

and gray curves indicate the heat capacity component CV,k(T ) contributed by the first zeros associated with the

freezing transition, the first zeros associated with the collapse transition and all remaining zeros, respectively.

zeros associated with the collapse transition. The gray curve is contributed by all remaining zeros.

Dotted and dashed curves can be slightly negative for small T , but they are positive in the peak region
and the shoulder region, respectively. Thus slight negative values of these curves do not influence the

identification of freezing and collapse transitions.

Figure 4 demonstrates the necessity of CV decomposition. The overlapping of the freezing transi-

tion and the collapse transition can only be separated by the peaks of dotted CV,1(T ) for the freezing
transition and dashed CV,1(T ) for the collapse transition. The peak positions, TCmax

V,1
, may be simply

defined as the critical points of small systems. For the freezing transition, the peak position of CV (T ),
TCmax

V
, can also be defined as the critical point. Since CV (T ) contains contributions from all other ze-

ros, its peak will deviate from the peak of the dotted CV,1(T ). These two peaks will coincide when N
goes to infinity. In finite systems, TCmax

V,1
from the dotted curve should be closer to the critical point of

the infinite system than TCmax
V
. This argument is true for the two-dimensional Potts model on self-dual

lattices, where partition function zeros near the exact critical point are located in an unit circle [70]. In

this case, TCmax
V,1
(L) is always closer to the the exact critical point than TCmax

V
(L) for any lattice size L. As

to the collapse transition, since CV (T ) doesn’t have a peak at higher temperature, the only candidate

here for the collapse transition temperature is TCmax
V,1
.

6 Scaling behavior, average m, and average end-to-end distance dee

We have used data of Table 1 to plot ZN(1) and ZN(0) as functions of N in Figure 5. We find asymptotic

behaviors ZN(1) ∼ μN Nγ−1 with μ = 4.684 ± 0.004 and γ = 1.16 ± 0.02, and ZN(0) ∼ μN
0
(log(N)1/4

with μ0 = 4.065 ± 0.001.

We have calculated the average m and the end-to-end distance dee (defined in Figure 1) as functions

of the temperature T for various N and found that the average m is a decreasing function of T for any

N, and the average dee is an increasing function of T for most N, but is not an increasing function of

T for some magic numbers N=9, 13, and 19. We predict that the next magic number is N = 28. The

details of such results will be presented in another paper.
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Figure 5. ZN(1) and ZN(0) as functions of N. The upper line is for ZN(1) whose asymptotic form is μN Nγ−1 with
μ = 4.684 ± 0.004 and γ = 1.16 ± 0.02, and the lower line is for ZN(0) whose asymptotic form is μN

0
(log(N)1/4

with μ0 = 4.065 ± 0.001.

Table 1. Numbers of zeros M, real zeros nr, ZN(1), and ZN(0) for the ISAW with N monomers on the sc lattice.

N M nr ZN(1) ZN(0)

14 10 0 157329085 30733485

15 11 1 744818613 125988493

16 13 1 3529191009 514975297

17 14 0 16686979329 2107630569

18 16 0 78955042017 8605954753

19 16 2 372953947349 35176580885

20 17 1 1762672203269 143513974833

21 18 0 8319554639789 586012139649

22 20 2 39285015083693 2389165997269

23 21 1 185296997240401 9747614991709

24 23 1 874331369198569 39717791925157

25 24 0 4121696814263460 161933965055557

26 26 2 19436473616738893 659491406814189

27 28 2 91582299477850157 2687260474091673

7 Discussion

In summary, we have introduced a CV decomposition scheme by partition function zeros and showed

that it can give a clear separation of the collapse and freezing transitions of the ISAW on a simple cubic

lattice. This method can also be applied to lattice models for structures, folding, and aggregation of

proteins [73, 76–78], in which more “phases” are possible for some specific sequences to cause the

pattern of zeros scattered. Our approach will be still valuable to the study of such systems.
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