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Abstract. Difficulties concerning the choice of the invariants of the projective transfor-

mation groups used for the identification of the shapes of planar objects are illustrated

and solutions allowing the derivation of robust identification criteria are discussed.

1 Introduction

The shape recognition of the objects is a multi-step process that involves a number of challenges.

Each step affects the whole process, but the correctness of the decision taken at the identification

step determines the quality of the solution of the whole problem. Starting from these circumstances,

a number of metrics was developed that allow the shape recognition within preset probabilities of

the false identification and object admission [1]. These metrics are known as methods of geometric

correlation (GC). Despite their high resolution, low sensitivity to noise, ability to operate in real time,

they have one important drawback. They are based on signature analysis and, therefore, require the

closed contour knowledge and the calculation of the center of gravity. In fact, the knowledge of the

full contour of the object is very difficult and it is not always available. To identify objects from open

contours, methods have been developed based on linear metrics and grid correlations [2], free from

the GC shortcomings.

There is, nevertheless, the issue connected with the fact that the reception of the remote images

always associates projective distortions. The above metrics, which are based on geometric, grid, and

linear correlations, are not able to correctly classify the objects subject to linear projective transfor-

mations (we do not consider the case when the projection plane is the surface of a paraboloid, then

the projective transformations will be non-linear). Since the projective distortions are present in the

overwhelming fraction of the remote images got in real conditions, the question of their classification

is extremely important.

The paper starts with a few basic results of the projective geometry (section 2). The extraction

of features of the object shapes which are not distorted by the linear projective transformations are

evidenced on case studies in section 3. Identification metrics which are insensitive to the projection

transformations are defined in section 4. A general discussion outlining the desirable features of the

proposed metrics is done in section 5.
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2 Essentials from Projective Geometry

The non-Euclidean geometry [3, 4] is built on the use of the of homogeneous coordinates by means

of which a point on a line is defined by a pair of values (x1, x2) in space R1. In affine coordinates, its

position is estimated by the ratio x = x1/x2. On a plane, in space R2, the homogeneous coordinate

representation of a point will be (x1, x2, x3). Except for (0, 0, 0), the transition to affine coordinates is

fulfilled by x = x1/x3, y = x2/x3. In affine coordinates,the equation of a straight line in the plane is

written down as u1x+ u2y+ u3 = 0, while under the use of homogeneous coordinates it takes the form

u1x1 + u2x2 + u3x3 = 0. (1)

If the triplet x1 : x2 : x3 is the generic notation for the projective coordinates of a point on the plane,

then, under constant values u1, u2, u3 the equation (1) describes all the points staying on the straight

line. If u1 : u2 : u3 is the generic notation for the projective coordinates of a straight line, then (1)

denotes, under constants x1, x2, x3 all straight lines passing through the point x1 : x2 : x3.

This property is an illustration of the principle of duality in the projective geometry [4], according

to which the points found on a straight line correspond to all the family of straight lines which pass

through a given point.

Another important feature of the projective transformations is the double ratio (anharmonic ratio).

Given four collinear points a, b, c, d, the ratio

μ =
ac
bc

:
ad
bd

(2)

is called the double.Here the distances in affine coordinates ac, bc, ad,bd denote the lengths of the

corresponding segments over the straight line, taken with the corresponding signs.

3 Object shape features insensitive to projective transformations

As a consequence of the above-mentioned properties, the projective transformations do not preserve

neither the linear sizes, nor the angles, nor the parallelism of the straight lines. Moreover, the linear

projective space may be anisotropic in general, in the sense that different scale changes of the coor-

dinate values occurr along the different coordinate axes. Due to these form distortions, none of the

metrics defined above will work.

Figure 1. Duality of pentagon representation

To overcome this difficulty, the principle of duality will be considered from a different point of

view. Let a pencil of lines be defined for a given figure such that each of its rays passes through two of

its vertexes. Then each of the rays of the pencil will correspond to some manifold of collinear points on

the projective straight line. The relative positioning of these collinear points will be fully determined

by the shape of the geometrical figure under consideration. To illustrate these ideas, we consider the

pentagon ABCDE shown in Fig. 1a through which four lines joining the vertex A with the other four

vertexes have been drawn. The equations of these straight lines in homogeneous coordinates will

look like (1). Going to the affine coordinates, the solution of the system of equations describing the
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Table 1. Matrix of distances from the dual pentagon representation

a b c d
a 0 0.85542 1.3441 2.0791

b 0.85542 0 0.48869 1.2237

c 1.3441 0.48869 0 0.73497

d 2.0791 1.2237 0.73497 0

straight line which goes through two points P(x1, y1) (identified with the vertex A of the pentagon) and

P1(x2, y2) (sequentially identified with the other four vertexes of the pentagon) is obtained in the form∣∣∣∣∣∣∣∣

x y 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣∣
= 0. These yield the equations of the four lines entering the pencil defined with respect

to A over the pentagon. Invoking the duality principle for fixed x and y values, the respective equations

are considered and solved in homogeneous coordinates. Turning back to the affine coordinates, we get

the set of four collinear points {(−1.0834, 0.40832), (−0.40389,−0.11131), (−0.015699,−0.40816),
(−0.56813,−0.85462)} (see figure 1b, in which, the obtained values have been multiplied by a fac-

tor 50 to simplify their visual representation). The distances between all the possible pairs of points

in the set {a, b, c, d} are given in Table 1. The calculations of the double ratios (2) result in the two

distinct values (1.6188 and 2.6161).

These results need a special discussion. Theoretically, if four collinear points occur at random,

then there are 24 distinct positions to place them on a straight line. However, the following proper-

ties ([4], p. 52) of the double ratio are known:

• it remains invariant if the first and the second pair of points are interchanged;

• it remains invariant under the permutation of the element inside each of the two pairs;

• it takes the reciprocal value 1/μ if the points of a single pair are interchanged.

Figure 2. Pentagon after projective transformation and its dual representation by collinear points

Taking into consideration these properties, and performing the calculations for all the existing

combinations, we get two values only, together with their reciprocals! Therefore, a given regular

pentagon can be specified by a characteristic pair of double ratios.

The next feature to be scrutinized is whether the double ratio changes as a result of the projective

transformations of the pentagon or not. After each projective transformation, the above-mentioned

procedure is repeated for the pencils of rays passing through the transformed pentagon vertexes. After

passing to affine coordinates, we obtained the four collinear points depicted in figure 2.

The calculation of the relative distances and of the double ratios results in the pair (1.5917, 2.69),

the terms of which differ from that obtained for the reference pentagon by less than one percent.

The remarkable agreement between the double ratio values calculated for the reference and for

the objects got by projective transformations suggests that the double ratio could be used as an objec-

tive measure for the characterization of the graphic shape of the objects subject to linear projective

transformations.
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Figure 3. Pentagon and collinear points generated by a pencil of straight lines from one of its vertexes

Table 2. Summary table of double relation for three pentagons

Fig. 1 Fig. 2 Fig. 3
A 1.6188 2.6161 1.5917 2.69 1.4969 3.0126

B 1.6159 2.6235 1.6509 2.5363 1.6321 2.582

C 2.6112 1.6207 2.6851 1.5934 2.3794 1.7249

D 2.6237 1.6159 2.5964 1.6264 1.4579 3.1839

E 1.6189 2.6158 1.6294 2.5888 2.1823 1.8458

On the other hand, let us consider the pentagon in the Fig. 3, which cannot be obtained from the

reference one by a projective transformation. For this pentagon, the double ratio values yielded by the

above algorithm are (1.4969, 3.0126). Marked differences from the reference ones are noticeable.

The question arises whether the derivation of a pair of number is sufficient to provide the full

description of the shape of the object or not.

The results of the calculations done for all the possible double ratios defined for all the vertexes of

the three pentagons considered in the figures 1 to 3 are given in Table 2. The comparison of the three

pairs of columns points to the significant result that there is an excellent agreement between the double

ratio values derived for the two pentagons related by a projective transformation. However, while the

pairs of double ratios obtained for the third pentagon agree with each other, they are significantly

different from that characterizing the reference pentagon.

To go further, we consider the arbitrary heptagon shapes drawn in figure 4.

We calculate the sets of collinear points for the pencils of straight lines starting at each heptagon

vertex. The positions of the resulting seven point sets (labelled from 1 to 7) on the line are ordered

in increasing order of one of the arguments. For the calculations of the double ratios, the following

four-point sets of combinations are possible: 1234, 2345, 3456, 4567, 5671, 6712, and 7123. In

contradistinction to the pentagon case, the obtained values of the double ratios define some set1. If,

similar to the pentagon case, all the values of these sets are calculated for all the combinations running

over all the vertexes, we get a matrix of the double ratios values of dimension n×m where n defines

the number of pencils and m – the number of vertexes.

The results of the calculations got for the heptagons shown in figure 4, which are obtained from

the reference one by projective transformations, result in values which are in excellent agreement with

each other.

The conclusion of this section is that the numerical characteristic of shape of the graphic objects

got by projective transformations is given by the the matrix of double ratios of the collinear points
produced by the pencils of the straight lines built over the vertexes of the contour.

1Theoretically the quantity of such combinations is equal to A4
n =

n!
(n−4)! .
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Figure 4. A heptagon (on the left) and three of its projective transformations

4 Identification metrics invariant to projective transformations
The scrutiny of the values of the elements of the double ratio matrix shows that the objects charac-

terized by the same numbers of vertexes can be divided into two classes: objects obtained from the

reference sample by projective transformations and objects which can’t be obtained in this way. To get

a criterion allowing the calculation of the distance between pairs of double ratio matrices of a given

rank, it is necessary to ensure one-to-one correspondence between the order of occurrence of the cor-

responding rows of the two matrices and the distributions of the element values inside corresponding

lines. Then the distance between the two matrices can be defined as

ρ =
1

n

n∑

i=1

ri, ri =
1

m

m∑

j=1

|ai j − bi j|,

where ai j and bi j denote the elements of the reference sample of the current object; m and n denote

the number of lines and columns, respectively.

However, due to the fact that a projective transformation may result into the rotation of the refer-

ence sample with an arbitrary angle, the order of the elements in a row may be cyclically displaced

to the left or to the right by a certain number of positions. Moreover, the rows themselves can be

cyclically displaced upwards or downwards by a certain number of positions. As a consequence, the

element locations can be different in the reference matrix and the transformed one. This asks for the

modification of the definition of the distance.

First, the concept of a cyclic transposition (denoted in what follows simply “transposition”) is

defined as the transposition to the left (up) by one position of all the elements of a row (or of all the

rows simultaneously) with the addition of the leftmost (top) element at the remaining void place on

the right (bottom). Then the distance function is redefined as

ηl,t,i = ei+t,l − si,l, t = 0, (m − 1), i = 1,m l = 1, n,

where si,l and ei,l are the elements of the reference matrix and of the transformed object at the l-th
row and the i-th column. The variation with the amount t of the index in ei+t,l involves the whole

transposition cycle of the row elements carried out during the search of the least deviation from the

reference sample.

Let sr,q denote the largest element of the reference matrix. All the matrix rows are transposed

upwards until the value r = 1 is obtained. Then the absolute measure of the identification error can

be defined over the rows,

δt,l =
1

m

m∑

i=1

|ηl,i,t |, t = 0, (m − 1), l = 1, n,

together with the relative measure of the identification error over the rows

σt,l =
1

m

m∑

i=1

|δt,l − ηl,t,i|, t = 0, (m − 1), l = 1, n.
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Provided the row transposition operation was already done for the reference matrix, the metric

remaining invariant to projective transformations can be defined. It serves as a criterion for the classi-

fication of the shapes of the objects

ρCDR1 =
1

n

n∑

l=1

min
t
δt,l, ρCDR2 =

1

n

n∑

l=1

min
t
σt,l.

Definition. Starting from these double ratio correlations #1 (CDR1) and #2 (CDR2), the recogni-

tion function for the identification of the shapes of the objects which are invariant to the projective

transformations can be defined

λCDR1 =

⎧⎪⎪⎨⎪⎪⎩
1, ρCDR1 < εCDR1,

0, ρCDR1 ≥ εCDR1,
λCDR2 =

⎧⎪⎪⎨⎪⎪⎩
1, ρCDR2 < εCDR2,

0, ρCDR2 ≥ εCDR2,
(3)

where εCDR1 and εCDR2 denote the allowed respective tolerances of the classification. The either of

the equalities λCDR1 = 1 or λCDR2 = 1 denote the successful object shape identification.

5 Discussion and Conclusion
Generally speaking, it is to be observed that the classical definition of the dual (anharmonic) ratio

cannot be used to build metrics, due to the fact that the distances between the points need to be cal-

culated in some predefined direction and therefore, theoretically, the quantity μ can take both positive

and negative values. Thus, it was used the assumption that all the distances are positive and have no

direction.

Another remark is related to the possibility that one of the lines of the pencil described in the affine

coordinates by the equation (1) can take the form u1x+0 ·y+u3 = 0, that is, it is parallel to the y-axis.

In this case, the solution of the system of linear equations is undefined. To solve the difficulty, in the

reference identification matrix it is necessary to remove the corresponding line.

When analyzing the results of the experiments, it is easily observable that under the projective

transformations of the object, the magnitude of the correlation double ratio (CDR) metric defined from

the first equation (3) is significantly smaller (average= 0.0149) than the similar metric value calculated

between objects that obviously cannot be obtained from each other under projective transformations

(average = 0.2132). This shows that the double ratio matrix is informative indeed and the CDR-type

metric is valid for the object form identification. The proposed identification methodology allows not

only to divide the objects into classes, it is capable of defining the visually similar objects whether

they were obtained from the reference one using projective mappings, or they belong to another type.

This makes the proposed metrics of interest for various fields of science and engineering, for

instance: in the aerial photograph processing; in robot technology – computer vision; in medicine

– radiology, magnetic resonance imaging (MRI), etc.; in mechanical engineering – the detection of

hidden defects of various components, and many others.
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