A New Treatment Below the Three-Body Break up Threshold in the \(\text{NN}\pi \) System

Shinsho Oryu1,a, Yasuhisa Hiratsuka1,b and Takashi Watanabe1,c

1Department of Physics, Faculty of Science and Technology, Tokyo University of Science

Abstract. The two-body threshold behavior at \(\text{NN}' \) and \(\pi \text{D} \) are investigated by using the multi-channel Lippmann-Schwinger equations with an energy dependent two-body quasi potential, which are analytically continued from the three-body Faddeev equations at the three-body break up threshold. Our calculated \(\text{NN}' \) and \(\pi \text{D} \) scattering lengths show better agreement with the experimental data for \(\text{NN} \) and \(\pi \text{D} \) systems than those from the original \(\text{NN}\pi \) three-body Faddeev equations.

Lovelace’s idea in the early 1960s that the two-body \(\text{N+N} \rightarrow \text{N+N} \) reaction should be described by the three-body \((N_2\pi)+N_1 \rightarrow N_2 + (\pi N_1) \) reaction \cite{1}, can be accomplished by the introduction of an energy dependent two-body quasi potential \(\text{E2Q} \) below the three-body break up threshold \cite{2}. The three-body Faddeev equations for the \(\text{NN}\pi \) system are analytically continued to the multi-channel two-body Lippmann-Schwinger (MLS) equations by the \text{E2Q} \cite{2} where the \(P_{11} \) bound state of \(\text{(NN)}' \approx \text{N'} \) is normalized to a nucleon \(\text{N} \) in this approach. The denominator of the Born term in the three-body Faddeev formalism is given by \(\omega_j(k_j) = \sqrt{k_j^2 + m_j^2} \) with the pion mass \(m_3 = m_\pi \equiv m \) and the nucleon mass \(m_1 = m_2 \equiv M \), and the three-body total energy is \(\sqrt{S} \),

\[
\text{D}_{\text{Fadd}} = \sqrt{S} - \omega_1(k_1) - \omega_2(k_2) - \omega_3(k_3) = \sqrt{S} + m - \omega_1(k_1) - \omega_2(k_2) - \omega_3(k_3) \equiv \text{D}_{\text{E2Q}},
\]

where \(\text{D}_{\text{E2Q}} \) is defined as the denominator of the \text{E2Q}. The non relativistic approximation for Eq.(1) gives,

\[
\text{D}_{\text{E2Q}} \approx (E + m) - \bar{k}_1^2/2m_1 - \bar{k}_2^2/2m_2 - (\bar{k}_1 - \bar{k}_2)^2/2m_3 \equiv E_{\text{cm}} - \bar{k}_{1,2}^2/2\mu_{1,2} - \bar{z}_{1,2} \quad (2)
\]

\[
\text{D}_{\text{Fadd}} \approx E - k_1^2/2m_1 - k_2^2/2m_2 - (k_1 - k_2)^2/2m_3 \equiv E - k_{1,2}^2/2\mu_{1,2} - z_{1,2} \quad (3)
\]

where \(\bar{k}_{1,2} \) indicates \(\bar{k}_1 \) or \(\bar{k}_2 \), and \(E_{\text{cm}} = E + m \) is the c.m. energy in the \text{E2Q} with \(E = \sqrt{S} - 2M - m \), while \(\mu_{1,2}^{-1} = M^{-1} + (M + m)^{-1} \) and \(\mu_3^{-1} = m^{-1} + (2M)^{-1} \) are the reduced masses, respectively. Because the inter-nucleon \(\bar{k}_{1,2} \) is obtained from \(k_{1,2} \) by absorbing energy \(m \), therefore we can define

\[
\bar{k}_{1,2}^2/2\mu_{1,2} \equiv k_{1,2}^2/2\mu_{1,2} + m. \quad (4)
\]

Substituting Eq.(4) to Eq.(2), and comparing with Eq.(3), we obtain \(\bar{z}_{1,2} = z_{1,2} \) which are the two-body sub-energies \(\bar{z}_1 \) or \(\bar{z}_2 \) in the virtual three-body system. Summing up \(k_i^2 \) with respect to \(i = 1, 2, 3 \),

\[a\text{-e-mail: oryu@rs.noda.tus.ac.jp}
\[b\text{-e-mail: yasuhisa1059@gmail.com}
\[c\text{-e-mail: watanabe@ph.noda.tus.ac.jp}

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
then we obtain $k^2_{3}/2\mu_3 = k^2_{2}/2\mu_3 - m^2/2M$ where \bar{k}_3 is a virtual momentum for $\bar{k}_3 < 0$. Let us call the new MLS equations with the E2Q the E2Q equation [2].

In solving the E2Q and the Faddeev equations, the first difference occurs “at the NN’ threshold” where $E_{\text{cm}} = 0$ and the integral variable $0 \leq \bar{k}_{1,2} < \infty$ in the E2Q equations, therefore $(D_{\text{E2Q}})^{-1}$ has a singular cut, while in the original Faddeev equations, $E = -m$ and $0 \leq k_i < \infty$, so that $(D_{\text{Fadd}})^{-1}$ is a regular function. The second appears in Eq.(4), $0 \leq \bar{k}_{1,2}^2 \leq 2m\mu_{1,2}$ gives $-2m\mu_{1,2} \leq k^2_{1,2} \leq 0$, therefore the integral range of $\bar{k}_{1,2}$ is larger than $k_{1,2}$. In addition, a phenomenon at the three-body break up threshold $E = 0$ gives rise to the Efimov effect [3], with an infinite two-body scattering length, where $E = 0$ brings about a singular cut which is the same as our $E_{\text{cm}} = 0$ case just mentioned above [2]. In a fourth difference, a phenomenon below the three-body threshold emerges as a long range NN’ interaction from an energy average of the E2Q [2]. We find that the calculated “NN’” and πD scattering lengths for the E2Q equations seem to be in better agreement with the experimental “NN” and πD data than the original three-body Faddeev calculations (Table 1).

Table 1. The “NN’” and πD scattering lengths are calculated using the original three-body Faddeev equation (Org-Fadd) and the E2Q calculation (E2Q). The potential-A is given by Thomas [4] and the potential-B is proposed by Fuda [5]. The E2Q results show good agreement with the experimental data both in the “NN” (3S_1) and the πD cases [6, 7].

<table>
<thead>
<tr>
<th>Method</th>
<th>Scattering length [fm]</th>
<th>System/State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Org-Fadd (potential-A[4])</td>
<td>0.280</td>
<td>NN’ 3S_1</td>
</tr>
<tr>
<td>Org-Fadd (potential-B[5])</td>
<td>2.85</td>
<td>NN’ 3S_1</td>
</tr>
<tr>
<td>E2Q (potential-B[5])</td>
<td>4.66</td>
<td>NN’ 3S_1</td>
</tr>
<tr>
<td>EXP [6]</td>
<td>5.424±0.004</td>
<td>NN 3S_1</td>
</tr>
<tr>
<td>Org-Fadd (potential-A[4])</td>
<td>0.033</td>
<td>πD</td>
</tr>
<tr>
<td>Org-Fadd (potential-B[5])</td>
<td>-0.019+0.019i</td>
<td>πD</td>
</tr>
<tr>
<td>E2Q (potential-B[5])</td>
<td>-0.023+0.019i</td>
<td>πD</td>
</tr>
<tr>
<td>EXP [7]</td>
<td>-0.038+0.009i</td>
<td>πD</td>
</tr>
</tbody>
</table>

Finally, it is stressed that the Hamiltonian below the three-body break up threshold is different from that above the threshold where the calculation should be carried out not with the “original” Faddeev equations but with the E2Q or modified Faddeev equations. This difference is emphasized in the NNπ system, because the two-body binding energy (i.e. the pion mass in the P_{11} state) is much larger than that in the nuclear three-body system, where such a discrepancy may be neglected.

References