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1. INTRODUCTION 

Biomass burning is the second largest global 
source of anthropogenic aerosols, and South 
America is one of the major source regions. In the 
dry season, the atmosphere of the Amazon basin 
features a remarkable haze, with layers containing 
high loadings of smoke. Aerosols with different 
degrees of ageing, are encountered in the 
boundary layer and the free troposphere. The 
South American Biomass Burning Analysis 
(SAMBBA) was an intensive observation 
campaign in September-October 2012 that 
involved measurements of the Amazonian 
atmosphere using the Facility for Airborne 
Measurements (FAAM) BAe-146 research 
aircraft. 

2. LIDAR OBSERVATIONS 

Twenty research flights were carried out from 
Porto Velho, Brazil, totaling 65 flying hours. A 
large range of conditions were sampled, from very 
low aerosol concentrations in pristine areas to 
large quantities of smoke within fresh plumes. 
The aircraft carried a nadir-pointing elastic 
backscatter lidar, operating at 355 nm. In situ 
probes sampled particle size distributions and gas-
phase chemistry. Six flights have been selected 
that span a 2400 km wide area extending East-
West across Brazil along a latitude of 
approximately 10°S. The lidar data presented here 
have a vertical resolution of 45 m and an 
integration time of 1 min (corresponding to a 9 
km footprint).  From these flights, 334 lidar 
profiles have been reviewed individually, and 
analysed. 

Processing has undergone a double iteration, to 
firstly to determine the lidar ratio (extinction-to-
backscatter ratio), and subsequently to estimate 
the aerosol extinction coefficient. The lidar ratio 
determination is based on iterating the retrieval 
method detailed in the next paragraph, until a 
good match to the overlying Rayleigh scattering 
layer is obtained (see e.g. Ref. [1]). A single value 
of the lidar ratio (constant with height) is thus 
obtained for each profile. It is then further 
averaged over all profiles in order to achieve a 
single lidar ratio for the campaign. The lidar ratio 
deduced from the lidar profiles using this 
methodology was found to be 73 ± 6 sr-1, and is 
compatible with Ref. [2–5].  

The determination of the aerosol extinction 
coefficient has followed Ref. [6]. This is a variant 
of the Fernald–Klett method [7–8], where the 
reference is taken within an aerosol layer. This 
permits using the stable (inward) solution in the 
unfavourable geometry represented by a nadir-
looking lidar. Very large uncertainties (50-100%) 
exist near the surface, but they are quickly 
damped when moving upwards  (< 20% above 2 
km). 

3. LIDAR RATIO ESTIMATED FROM IN 

SITU MEASUREMENTS  

The lidar ratio obtained from the lidar profiles has 
been compared to estimates derived from the Mie 
scattering theory, using the particle size-
distribution from the optical particle counters. Fig. 
1(a) shows the campaign-mean size-distribution, 
and Fig. 1(b) shows the resulting lidar ratio as a 
function of the real and imaginary parts of the 
reftractive index. 
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Fig. 2 Extinction coefficient evaluated by lidar for 27 September 2012 (top) and predictions with the UM. 

 

DOI: 10.1051/
I

11911, 11923006
LRC 27

EPJ Web of Conferences epjconf/201623006 (2016)

3




