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Abstract. To tackle thorax movement from CT images, we have developed a platform to 
simulate a customized breathing cycle, where the pulmonary movement has been considered 
only at the rough border of the whole lung by artificial neural networks (ANN). The goal of 
this work is to include additional information of the lung lobe. Thus, more ANN will be used 
and future simulation will be able to take into consideration the impact of tumor on lobe 
movement. We present a new automatic segmentation algorithm that enables the extraction of 
lobar contour data using sliding mask and direction estimation. These improvements enhance 
the overall system performance in which higher precision and more accurate treatments can be 
expected. 

1 Introduction 
Radiation therapy aims at targeting tumor and preserving the surrounding healthy tissues. Nowadays, 
new treatment techniques improve the accuracy of beam targeting, but the problem of organ 
movements is still an issue. In most cases, especially for tumors located in the lungs, it is difficult to 
control breathing and lung movement, during the treatment session. Therefore, it is required to take 
into account the organ movement during therapy planning, which leads to an increasing amount of CT 
and 4DCT. From a radiation protection point of view, the patients receive an increasing amount of 
“small” doses from these imaging techniques (e.g. a 4DCT is 5 to 6 times more irradiating than 
3DCT). One active research perspective concerns the simulation of breathing movement. The IRMA 
team has previously developed a platform for customized simulation using neural networks [1]. In 
order to improve the simulation, it is worth performing an accurate identification and consider the 
analysis of lung structure on a lobe-by-lobe basis. This additional lobe segmentation information will 
be useful not only for the early detection of pathologies but also for better precision, higher accuracy 
of treatment, and later to deal with the movement artifacts due to the tumor. 
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Pulmonary lobe segmentation is a challenging topic that attracts interest in the medical imaging 
community. Due to the difficulties to control the different CT scanners and acquisition protocols, the 
obtained images usually vary in resolution, qualities, anatomical reference, etc. The missing of some 
parts of the organs, the artifacts, and incomplete fissures are among the issues found especially in 
unhealthy patients. Many automatic and semi-automatic techniques have been published in the litera-
ture. Rikxoort et al. [2] and Zhang et al. [3] used method based on an anatomic pulmonary atlas. 
Kuhnigk et al. [4] and Ukil et al. [5] proposed a semi-automatic watershed transformation based on 
intensity and distance to vessels and airways. Ross et al. [6] combined the atlas with hessian-based 
particle sampling and thin plate splines. Lassen et al. [7] and Doel et al. [8] also applied the hessian 
analysis with the watershed transform. This paper proposes an alternative scheme for lobar segmenta-
tion using sliding mask with direction estimation. The goal is to provide relatively fast and closed 
representation of lung lobes in each breathing phases for the training of ANN. 

2 Methods  

Neural networks work similarly to biological neurons, in the sense that they need training before being 
able to interpolate data. To learn the lobe movement, learning sets have to be constituted. They consist 
of the movement vectors at various breathing phases for the lobe contour points. To build these 
learning sets, extracting the lobe contours automatically or with minimum interactivity is desirable. In 
our work, image processing plays an important role and has been utilized for the CT scans. The data 
flowchart illustrated in figure 1 describes the main operations of the algorithm.

Figure 1. Flowchart of the overall algorithm. 

2.1 Lung contour extraction 

The raw images obtained from the CT scans generally contain irrelevant components, e.g. other organ 
tissues, backbone, ribs, diaphragm, or some parts of the machine. Since we consider only the lung 
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organ, the preliminary task is therefore to separate out the complete lung and maintain the image de-
tails within it (i.e. image intensity). Digital Imaging and COmmunications in Medicine (DICOM) 
images are read all at once for each breathing phase of the patient. The image sequence with approxi-
mately highest volume of the lung capacity is then called to define cropping coordinates of the target 
area. Consequently, morphological operations (i.e. filling holes) and image subtraction are performed 
to ensure that the details inside the lungs are recovered. In addition, grayscale thresholding and image 
normalization are applied to provide better contrast and brightness for visualization. The resulting 
images from these procedures are shown below. 

Figure 2. Lung contour extraction: (a) original image, (b) cropped image, (c-e) image after morphological opera-
tors, and (f) image after thresholding and normalization. 

These global lungs are then divided into 2 sections to ease the later manipulation. We can split the 
left and the right lungs by a separation line. This line is drawn on the overlapping frame, where the 
image slices are all plotted (see figure 3) ensuring that the line is properly defined for the whole 
sequence of the breathing phase.  

  
 

  

 
DOI: 10.1051/00005 (2016),124 12400005EPJ Web of Conferences epjconf/2016

L.A.R.D. 2015

3



Figure 3. Overlapping frame (a) with the separation line (b).

Lungs are divided into 2 sides with 5 pulmonary lobes. All these lobes are separated by thin tissues 
called lobar fissures. The left lung consists of an upper and lower lobe separated by oblique fissure, 
while the right lung consists of an upper, middle, and lower lobe separated by horizontal and oblique 
fissures. Beside the lung contour, we also have to define the lung fissures, which are the separation of 
the lung lobes. The key idea of fissure detection is to remove the redundant elements within the lungs: 
bronchus and blood vessels. 

2.2 Bronchus elimination 

The bronchus is a passage of airway in the respiratory tract. It connects to the lung directly. Bronchi 
are found in almost every image slices. In order to eliminate these bronchi branches, the solution is to 
employ 3D region growing [9-10]. The segmentation process consists in merging all neighborhood 
voxels that satisfy a homogeneity criterion guided by an initial seed. The seed voxel is specified inter-
actively with a mouse, pinned over the intensity threshold selection of the bronchus area. In our work, 
it is located on the image frame where the bronchus first appeared. The algorithm provides rough 
bronchus segmentation for all the lung slices.  Here are examples of results. 

Figure 4. Enhanced image (a) and airway segmentation (b).    

2.3 Blood vessel removal 

The blood vessels are another main component used to carry the blood between heart and pulmonary 
system. The pulmonary arteries transport deoxygenated blood from the heart to the lungs, while the 
pulmonary veins supply oxygenated blood from lungs back to the heart. The purpose of this step is to 
suppress the vessels in the image, so that the fissure can be better identified. Moreover, these blood 
vessels are not only found in the entire lungs but also have different intensity variations, making it 
tedious to perform region growing as in the case of bronchus. We apply dilation operation to expand 
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the blood vessels in each frames. The result in figure 5 shows the lung with the black patches covering 
the vessels area. At this step, the fissures can be distinguished easily (see figure 6).   

Figure 5. Enhanced image (a) with blood vessel patches (b). 

Figure 6. Enhanced image (a), and combined bronchus and vessels removal (b).  

  

Figure 7. Example of 2 initial points of fissure.

2.4 Fissure localization 

The fissures are localized by two interactive points on both sides of the lungs. These 2 initial points 
marked in red (see figure 7) are then expanded using sliding mask. The mask is defined based on the 
trend of fissure orientation and displacement, which allows us to predict the next starting points of the 
following frames from the knowledge of the preceding frames. The example of sliding mask is shown 
in figure 8. For each frame, the itinerary begins at the starting point and prolongs forward and back-
ward by direction estimation as illustrated in figure 9, until reaching the limits at the edge of the lung. 
Therefore, there are 4 border lines to be considered: left-end of left lung, right-end of left lung, left-
end of right lung, and right-end of right lung.  

Figure 10 shows the result from fissure and lung contours extraction. The contour of the right lung 
is drawn in blue, the green and magenta lines indicate the forward and backward fissures. Similarly, 
the edge of the left lung is plotted in magenta, and partial fissures connecting in yellow and blue.  
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Figure 8. Red box indicates the considered pixel, black thick line indicates the area of sliding mask for searching 
the next fissure point. If no candidate point is detected, the search area is extended. 

Figure 9. Direction estimation scheme. Red box indicates the considered pixel. Left and right neighbor fissure 
points are recursively searched within the mask. 

Figure 10. Lung contour and lobar fissures.

2.5 Lung lobes determination 

We combine fissures and lung contour information to obtain all data points of the lung lobes. Howev-
er, these individual lung lobe contours are not directly usable. To be precise, their alignment is not in 
an order that satisfies the interpolation necessity.  Therefore, it is required to apply edge detection 
before partitioning the lung into several lobes. We then use the rolling matrix method with priority 
indexes in clockwise and anti-clockwise direction. The priority index represents the searching order of 
neighborhood pixels. Examples of 3x3 matrix with priority indexes are represented in figure 11. Even-
tually, we obtain a smooth contour and well-ordered points as shown in figure 12.  

Figure 11. Priority matrix.
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Figure 12. Extraction of pulmonary lobes: (a) upper right lobe in green, (b) lower right lobe in red, (c) upper left 
lobe in blue, and (d) lower left lobe in yellow.

2.6 Lung lobes representation 

Since, the algorithm provides excessive amounts of data points for network training, interpolation is 
required to determine the global representation for lobe contour of certain breathing phases. In our 
work, we use spline interpolation in 2 different manners: to interpolate the points within the image 
frames, and among the image frames (both row-wise and column-wise).  

The results provide the illustration of lung fissure display. The computation yields significant 
improvement providing precise lobe of the lung contour. Currently, we can localize the oblique 
fissures on both left and right lungs. Therefore, four lobes (out of 5) are automatically detected using 
the extracted fissures. By the fact that the missing lobe does not move significantly during the 
breathing simulation, the current work suspends it for simplicity. The simulation has been verified on 
several CT image sequences from various patients.  Examples of 3D lobe representation and point 
representation are shown in figure 13 and figure 14, respectively.  

Figure 13. Lung lobe representation: (a) Upper right lobe in green, (b) lower right lobe in red, (c) upper left lobe 
in blue, and (d) lower left lobe in black. 
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Figure 14. Lung lobe representation: upper right lobe in green, lower right lobe in red, upper left lobe in blue, 
and lower left lobe in yellow. 

The computational time of this algorithm is approximately 2 minutes (excluding the pre-image 
processing and interpolation step).  Amount of points representing lobes is 20 per frame and number 
of final points corresponding to the lobes for one phase is 15.  These results after spline interpolation 
will be used in the learning algorithm. The database is accumulated from 8 to 10 breathing phases for 
10 patients. 

3 Conclusion 
We have introduced a new approach for individual lung lobes segmentation. This work is mainly of 
interest to both radiation therapy and radiation protection. The customized simulation of lung move-
ment can be performed independently on each lung lobe. The clue combination of fissures and prima-
ry lung contour provides adequate numbers of points, as input data to build the learning sets for ANN 
training. ANN will allow us to simulate lobe movements with and without tumor. Therefore, the 
breathing movement can also be simulated for sick patients.  

In the next stage, we would like to enhance the performance of the software in both image 
processing and learning network aspects. The robustness of the current algorithm can be improved to 
suit the variation of the CT input images regardless the scanners and the patients. These will also solve 
human intervention issue. Last but not least, we would like to extend this work to other organs in 
order to simulate a customized breathing movement for the whole thorax. 
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