Effect of magnetic ordering of Dy$_2$BaNiO$_5$ on the crystal-field levels of dysprosium: optical spectroscopy of f-f transitions

A.S. Galkin1,2, and S.A. Klimin1*

1Institute for Spectroscopy RAS, 108840 Troitsk, Moscow, Russia
2Technological Institute for Superhard and Novel Carbon Materials, 108840, Troitsk, Moscow, Russia

Abstract. Optical transmission spectroscopy study of the Haldane magnet Dy$_2$BaNiO$_5$ was performed in the region of f-f transitions of the Dy$^{3+}$ ion in a wide range of temperatures (5-300 K). At temperatures lower than T_N (59 K), Kramers doublets of the rare-earth ion split. Spectroscopic data obtained were used to calculate the Schottky-type anomaly in the temperature dependence of the magnetic susceptibility of Dy$_2$BaNiO$_5$ and to model the experimental data available in literature. Anomalous behavior of crystal-field energies of the Dy$^{3+}$ ion was attributed to the magnetoelectric interactions.

Dysprosium nickelate Dy$_2$BaNiO$_5$ belongs to the family of rare-earth (RE) chain nickelates R_2BaNiO$_5$ (R=RE), well-known as model compounds for studying Haldane magnetism [1,2]. In Dy$_2$BaNiO$_5$, antiferromagnetic (AFM) ordering arises at $T_N = 59$ K [3,4] due to dysprosium-mediated interaction between nickel S=1 chains. Temperature dependence of the magnetic susceptibility $\chi(T)$ of Dy$_2$BaNiO$_5$ has a broad maximum at $T_m = 45$ K [5], attributed to a dysprosium contribution. Shottky-type anomaly in the $\chi(T)$ dependence can be calculated directly from spectroscopic data on the RE ground-doublet splitting [6,7], however, such data are not available in the literature. According to recent studies, Dy$_2$BaNiO$_5$ demonstrates multiferroic behavior [8], spontaneous electric polarization P emerges at $T<T_N$. In this work, we study the temperature behavior of crystal-field (CF) levels (Kramers doublets) of the Dy$^{3+}$ ion by means of optical spectroscopy, with the aim to extract information on low-energy CF-excitations of the dysprosium ion and to calculate the dysprosium contribution into the magnetic susceptibility of Dy$_2$BaNiO$_5$. Another goal was to look for spectroscopic effects related to the appearance of P in the AFM phase.

Optical transmittance spectra of polycrystalline Dy$_2$BaNiO$_5$ were measured in a wide spectral range (3000 – 15000 cm$^{-1}$) comprising several multiplets of the Dy$^{3+}$ ion, with the use of a BRUKER IFS125HR Fourier spectrometer. To get low temperatures, a closed-cycle optical cryostat CRYOMECH PT403 was used. The analysis of temperature-dependent transmission spectra enabled us to find the following CF energies (in cm$^{-1}$) for different multiplets: $^6H_{15/2}$ (0, 150, 275), $^6H_{13/2}$ (3565, 3670, 3690, 3770, 3810, 3860, 3910), $^6H_{11/2}$ (5978, 6026, 6063 6070, 6109), $^6H_{9/2+6F_{11/2}}$ (7755, 7788, 7824, 7923, 7946, 7962),

* Corresponding author: klimin@isan.troitsk.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
In particular, the ground Kramers doublet is separated by a gap from the excited states. Thus, a model of an isolated ground doublet \([6,7]\) can be used for describing thermodynamic properties of Dy\(_2\)BaNiO\(_5\).

The observed splitting of Kramers doublets (Fig. 1) confirms a magnetic ordering of the crystal at \(T_N = 59\) K. For modeling of the dysprosium contribution to the magnetic susceptibility \(\gamma(T)\) of Dy\(_2\)BaNiO\(_5\) we have utilized experimentally obtained temperature-dependent splitting of the ground Kramers doublet \(\Delta_0(T)\), which reaches the value of 39 cm\(^{-1}\) at 5 K. The results of modeling lead us to a conclusion that the low-temperature magnetic susceptibility of Dy\(_2\)BaNiO\(_5\) is determined by the dysprosium contribution, while the one-dimensional contribution of the nickel chains is much smaller.

Unusual behavior of the dysprosium CF energies in Dy\(_2\)BaNiO was detected in the temperature range lower than \(T_N\). All CF levels experience a shift (up to 10 cm\(^{-1}\)) from their positions at \(T_N\) (see, e.g., Fig. 1). Such behavior can be explained as being due to the spontaneous electric polarization that appears in the temperature range discussed \([8]\). Redistribution of the charge density influences the crystal field acting on dysprosium and leads to a renormalization of CF self-energies.

Fig. 1. (a) Transmission spectra in the region of \(6F_{7/2}\) multiplet of Dy\(_{3+}\) ion in Dy\(_2\)BaNiO\(_5\) at different temperatures. Grey lines show schematically line splittings. (b) Positions of line 11096 cm\(^{-1}\) and its split components as a function of temperature. Vertical dashed line is drawn to underline asymmetrical character of splitting.

References