Two-zone model for the broadband Crab nebula spectrum: microscopic interpretation

F. Fraschetti¹,a and M. Pohl²,³

¹Dept.s of Planetary Sciences and Astronomy, University of Arizona, Tucson, AZ, 85721, USA
²DESY, 15738 Zeuthen, Germany
³Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

Abstract. We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10⁻⁵ eV and ~ 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to ~ 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.

1 Introduction

The steady-state gamma-ray emission of the Crab Nebula has been observed in the past decade by a number of ground-based observatories, i.e., HEGRA [1], MAGIC [2], HESS II [3] and VERITAS [4]. The photon differential spectrum as determined by such experiments is consistent with a log-parabola distribution from ~ 50 GeV up to 100 TeV. We propose a two-zone model with two distinct populations of energetic electrons having two distinct log-parabola distributions injected at the same energy to explain the broadband spectrum from 10⁻⁵ eV up to 100 TeV; however, the MeV region exceeds our prediction. In the literature, the broad and flat VHE peak at 200 GeV joining the TeV-band spectrum observed with MAGIC (0.05 – 30 TeV) with the GeV-band spectrum obtained with Fermi/LAT (1 – 200 GeV) has been empirically modelled with a modified log-parabola with an additional free-parameter that is not physically justified [2]. We show that such VHE peak is naturally explained by inverse-Compton scattering off monochromatic Infra-Red ambient photons within the nebula of a log-parabola distribution of electrons. Synchrotron radiation explains the radio/X-ray spectrum.

2 Outline of the model for steady injection of energetic particles

We assume that the number of electrons accelerated at the nebula termination shock (TS) with Lorentz factor > γ is given by a log-parabola

\[N(\gamma) = N_0 (\gamma/\gamma_0)^{-[s-1+\log(\gamma/\gamma_0)]}, \]

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
where N_0 is a normalization constant, γ_0 is the electron injection Lorentz factor and the spectral parameters s and r are related to the microscopic statistical parameters.

2.1 Inverse Compton flux

The target photon population within the nebula is assumed to be isotropic in the frame of the plasma flowing downstream of the shock at the scale of the VHE electrons mean-free path. The cold photons are IC scattered by the isotropic energetic electrons.

For a photon ambient population with a phase space photon density (number of photons per unit of volume and energy) given by $n(\varepsilon)$ in the plasma frame, the spectrum of the scattered photons with initial energy between ε and $\varepsilon + d\varepsilon$ and final energy ε_1 per single electron is [5]

$$
\frac{dN_{\gamma,\varepsilon}}{d\varepsilon_1} = \frac{3\sigma_T c n(\varepsilon)}{4\gamma^2} \frac{d\varepsilon G(q, \Gamma)}{\varepsilon_1},
$$

where σ_T is the Thomson cross-section, c the speed of light in vacuum and

$$
G(q, \Gamma) = 2q\ln q + (1 + 2q)(1 - q) + \frac{\Gamma^2 q^2(1 - q)}{2(1 + \Gamma q)}, \quad \Gamma = \frac{4\varepsilon\gamma}{m_e c^2}, \quad q = \frac{\varepsilon_1}{\Gamma(m_e c^2 - \varepsilon_1)}.
$$

and where Eqs (2, 3) are derived under the only restriction $\gamma \gg 1$. The calculation of the IC power emitted by a single electron in the plasma frame over the target photon distribution $n(\varepsilon)$ requires integration over the kinematically permitted photon final energies:

$$
P_{IC} = \int_0^\infty d\varepsilon \int_0^{\varepsilon_M} d\varepsilon_1 \frac{dN_{\gamma,\varepsilon}}{d\varepsilon_1} = 12\varepsilon_1^3\gamma^2 \int_0^\infty d\varepsilon \varepsilon n(\varepsilon) J(\gamma),
$$

where $\varepsilon_M = \Gamma m_e c^2/(1 + \Gamma)$ and $J(\gamma) = \int_0^1 dq q G(q, \Gamma)/(1 + q\Gamma)^3$. The factor $J(\gamma)$ can be approximated as follows: $J(\gamma) \approx 1/9$ in the Thomson limit ($\Gamma \ll 1$) and $J(\gamma) \approx [\ln \Gamma - 11/6]/2\Gamma^2$ in the extreme Klein-Nishima limit ($\Gamma \gg 1$) [6].

We use the simplifying assumption of a monochromatic target photon field, $n(\varepsilon) = n_0 \delta(\varepsilon - \varepsilon_0)$, where ε_0 is determined by the joint fit of Fermi/LAT and MAGIC data. Thus, the power P_{IC} is given in the extreme Klein-Nishima limit by

$$
P_{IC} = \frac{3}{8} \sigma_T c (m_e c^2)^2 \int_0^\infty d\varepsilon \frac{n(\varepsilon)}{\varepsilon} \left[\ln \frac{4\varepsilon\gamma}{m_e c^2} - \frac{11}{6} \right] = \frac{3}{8} \sigma_T c (m_e c^2)^2 \frac{n_0}{\varepsilon_0} \left[\ln \frac{4\varepsilon_0\gamma}{m_e c^2} - \frac{11}{6} \right].
$$

Given the differential electron distribution from Eq. 1,

$$
\frac{dN(\gamma)}{d\gamma} = \frac{N_0}{\gamma_0^3} \left[s + 1 - 2r \log(\gamma/\gamma_0) \right] \left(\frac{\gamma}{\gamma_0} \right)^{-[s+r\log(\gamma/\gamma_0)]},
$$

the total IC power is found by folding $dN(\gamma)/d\gamma$ with P_{IC} in Eq. 5. $P_{IC}^{tot}(\nu) = \int d\gamma P_{IC} dN(\gamma)/d\gamma$. Finally, defining the total IC flux at Earth from a source at distance d as $\nu F_{IC} = P_{IC}^{tot}(\nu)/4\pi d^2$ leads to

$$
\nu F_{IC,\nu}(\varepsilon) = \frac{\mathcal{R}(\varepsilon_0)}{4\pi d^2} \left[\ln \frac{4\varepsilon_0\varepsilon}{(m_e c^2)^2} - \frac{11}{6} \right] \frac{N_0}{\gamma_0} \left[-s + 1 - 2r \log(\varepsilon/\varepsilon_0) \right] (\varepsilon/\varepsilon_0)^{-[s+1+r\log(\varepsilon/\varepsilon_0)]}
$$

where we have defined $\varepsilon_0 = h\nu_0 = m_e c^2 \gamma_0$ and $\mathcal{R}(\varepsilon_0) = (3/8)(h/m_e c)\sigma_T (m_e c^2)^2 n_0 \gamma_0 / he \varepsilon_0$ and we have used the monochromatic approximation $h\nu \approx m_e c^2 \gamma$ for the extreme Klein-Nishima limit. Equation 7 is a log-parabola distribution multiplied by two logarithmically dependent pre-factors in the squared brackets of the right hand side.
2.2 Synchrotron flux

The synchrotron power emitted by a single electron, averaged over an isotropic electron distribution, is given in the plasma frame by

\[P_{\text{syn}} = \frac{\sigma_T c}{8 \pi} \gamma^2 B^2, \]

where \(B \) is the external magnetic field assumed to be uniform. The total synchrotron power is found by folding the single electron power with the differential electron spectrum in Eq. 6:

\[P_{\text{tot}} = \int dy P_{\text{syn}} dN(\gamma)/d\gamma. \]

We use the monochromatic approximation with a characteristic synchrotron frequency \(\nu_s \).

\[\nu_s = \frac{0.29(3e^2 B)^2}{(4\pi m_e c)} = \gamma^2 \nu_0, \]

so we recast \(P_{\text{tot}} = \int dy P_{\text{syn}} dN(\gamma)/d\gamma|_{\nu = \nu_s}. \) Thus, for \(\nu \approx \nu_s \), the total flux at Earth \(\nu F_{\nu} \), related to synchrotron power \(vF_{\nu}^{\text{syn}} = P_{\text{tot}}^{\text{syn}}(\nu)/4\pi d^2 \) can be approximated as

\[vF_{\nu}^{\text{syn}}(\epsilon) = \frac{\sigma_T c}{12\pi 4\pi d^2} N_0 B^2 \gamma_0^2 \left(\frac{\epsilon}{\epsilon_0 \gamma_0^2} \right)^{-\frac{1}{2}[s-3+\epsilon \log(\epsilon/\epsilon_0 \gamma_0^2)]} \left[-s + 1 - r\log(\epsilon/\epsilon_0 \gamma_0^2)\right]. \]

where we have defined \(\epsilon_0 = h\nu_0 \).

3 Comparison with broadband observations

3.1 GeV and multi-TeV spectrum

We assume that energetic electrons inverse-Compton scatter off a gas of monochromatic IR photons within the nebula with energy \(\epsilon_0 = 10^{-2} \) eV and number density \(n_0 = 5 \times 10^2 \) cm\(^{-3}\) (the distance from the source is \(d = 1.9 \) kpc). Figure 1, Left panel, compares the resulting analytic photon differential spectrum in the VHE range given by Eq. 7 with the spectra from various ground-based VHE observatories above 10 GeV: HEGRA (300 GeV- 100 TeV) [1], MAGIC (50 GeV - 30 TeV) [2], HESS II
for the IC peak at $\approx 200\text{ GeV}$. Our theoretical curve is also able to reproduce the broadness of the IC peak and the high-energy Fermi/LAT data; the logarithmic pre-factor in the second squared parentheses in Eq. 7 governs the width of the GeV peak that a simple log-parabola curve fails to reproduce.

The simple theoretical curve derived here is in good agreement with both the Fermi/LAT rising data up to the IC peak and the VHE data. The declining part of the Fermi-LAT spectrum below ≈ 1 GeV is likely to arise from a distinct particle population or distinct acceleration process. The best-fit value of the VHE band in a magnetic field with strength $B = 140\mu G$ gives a characteristic synchrotron photon energy $E^s_0/\gamma^s_0 = 2.7\text{ eV}$. The corresponding $\nu F^{\text{sync}} = P^{\text{tot}}_{\text{sync}}(\nu)/4\pi d^2$ (see Eq.8) with parameters fixed by fit of IC spectrum is inconsistent with radio and X-ray data.

3.2 Radio and X-ray spectrum

By using a constant and uniform magnetic field with strength $B = 140\mu G$, the radio and soft X-ray data ($10^{-5} \text{ eV up to} \sim 10\text{ keV}$) can be reproduced with the steady synchrotron emission from a log-parabola given by Eq. 8, as shown in Fig.1, right panel. However, the best-fit parameters differ from those in the VHE range (see Table 1) with the same injection $\gamma_0 = 2 \times 10^6$. Such a parameter set leads to a predicted IC flux inconsistent with VHE observations. In addition, Fig. 1 shows that the range $0.1 - 10^3 \text{ MeV}$ requires a third energetic particles population or emission process that is not discussed in this work. The best-fit values of the indexes s, r are about twice for synchrotron than for IC (see Table 1). The reason is in the monochromatic approximation leading to the difference of a factor 1/2 in the exponential of the log-parabola in Eq. 8 as compared to Eq. 7: the characteristic frequency scales as γ for IC and as γ^s for synchrotron. We note that the Synchrotron self-Compton with the best-fit parameters of the synchrotron radiation is inconsistent with the Fermi/LAT and MAGIC data.

4 Discussion and Conclusion

The log-parabola particle spectrum can be derived in the assumption that the probability for energetic electrons of remaining in proximity of the acceleration region and not being advected downstream or leak upstream of the shock, P, decreases with γ as $P = g/\gamma^q$, with the normalization constant g and $q > 0$ [8]. As well known, a P independent of energy results in a power-law particle spectrum. For a quasi-perpendicular shock geometry such as the nebula TS, to the lowest order in U_1/v where
Table 1. Best-fit value of the electron log-parabola distribution parameters within the specified range

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>r</th>
<th>$N_0(10^{44})$</th>
<th>$\bar{e}_0 = m_e c^2 \gamma_0$ (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchrotron (5 × 10^{-6} eV – 10 keV)</td>
<td>2.795 ± 0.003</td>
<td>0.2523 ± 0.0018</td>
<td>10^3 ± 90</td>
<td>1.049 ± 99</td>
</tr>
<tr>
<td>IC (2.2 – 10^4) GeV</td>
<td>1.3616 ± 0.0054</td>
<td>0.06557 ± 0.0024</td>
<td>1.000 ± 0.009</td>
<td>1.003 ± 0.099</td>
</tr>
</tbody>
</table>

U_1 is the upstream flow speed, we find $q = 2rU_1/c$ (see [9] for detailed discussion). If $U_1/c \approx 0.2$, we find for the two electron populations $q \approx 0.026$ (VHE) and $q \approx 0.1$ (Radio/X-ray). The origin of the two distinct electron populations is not discussed in this short note.

Acknowledgment

We thank D. Mazin, N. Otte and M. Holler for sharing low-energy, VERITAS and HESS II data respectively. The work of FF was supported in part by NASA under grants NNX13AG10G and NNX15AJ71G. FF thanks the organisers of the 6th RICAP held in 2016. FF thanks for the hospitality the Harvard/Smithsonian Center for Astrophysics where part of this work was performed.

References