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Abstract. We discuss a framework for the measurement of the B → K∗ transition form

factors in lattice simulations, when the K∗ eventually decays. The possible mixing of πK

and ηK states is considered. We reproduce the two-channel analogue of the Lellouch-

Lüscher formula, which allows one to extract the B → K∗l+l− decay amplitude in the

low-recoil region. Since the K∗ is a resonance, we provide a procedure to determine

the form factors at the complex pole position in a process-independent manner. The

infinitely-narrow width approximation of the results is also studied.

1 Introduction

At present, several rare B meson decay modes are very promising in search for physics beyond the

Standard Model (BSM). The B → K∗l+l− is, in particular, regarded as one of the most important

processes, since the polarization of the K∗(892) resonance results in many observables. Recently,

LCHb and Belle collaboration have observed an interesting pattern of deviations from the SM pre-

dictions in this mode [1–3]. Similar discrepancies have been seen concerning the branching ratios

of Bs → φµ+µ− and B → Kµ+µ− [4]. The possible explanations of these anomalies fall into one of

two categories: BSM or the strong sector of SM, described by QCD. In our opinion, it is very impor-

tant to have a precise knowledge of the form factors of the corresponding hadronic matrix elements,

which enter the analysis of the experimental data. They contain theoretical uncertainties that should

be quantified. Lattice QCD, which is well suited in the low recoil region, is the only first-principle

method to tackle this problem. In particular, the calculations, based on the light cone sum rules suffer

from relatively large uncertainties in this kinematical region [5, 6]. Hence, there is a strong interest in

a direct lattice measurement of the form factors.

The first unquenched lattice QCD results on the B → K∗ form factors have recently appeared

[7–9]. The major drawback of these calculations is that values of the pion mass are unphysical. In

this case, the K∗ resonance is a stable particle and thus the standard lattice techniques can be used

for the analysis of the data. When the K∗ eventually decays into πK, the final-state meson interaction

introduces a dependence of the current matrix elements on the volume. This finite-volume effect

cannot be neglected, since it does not fall off exponentially, but only as a power of the volume. It

has been first calculated by L. Lellouch and M. Lüscher, who considered the K → ππ decay [10].

The developed method is a generalization of the Lüscher finite-volume approach [11]. The latter

provides a framework to extract the elastic phase shifts and the resonance parameters (the mass and
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width) from the two-particle discrete energy levels spectrum, measured on the lattice. The Lellouch-

Lüscher method has been subsequently generalized to include the baryons, the higher partial waves

and multiple strongly-coupled decay channels [12–15].

Further, one should have a proper definition of the matrix elements involving resonances, such

as K∗ or ∆. Assuming the Breit-Wigner form of the resonance, the imaginary part of the transition

amplitude is parametrized in terms of the current matrix elements [16, 17]. Such a definition of

the form factors, however, yields a process- and model-dependent result, since the background is

unknown. Recently, we have proposed an alternative, process-independent definition, in which the

resonance matrix element is given as a residue of the respective three-point Green’s function, taken at

complex resonance pole [18, 19] (see also Ref. [20]). This is basically a generalization of the work

by S. Mandelstam on the matrix elements between the bound states [21]. If the resonance width is not

very small, using different definitions might have an effect on the extracted observables.

The present paper summarizes the findings of Ref. [22]. We provide, along the lines of the

Lellouch-Lüscher method, a framework for the extraction of the B → K∗ form factors on the lattice.

The presence of the ηK threshold is taken into account. One could expect that the effect of this

threshold might be seen in the lattice data. We also derive a formula to determine the form factors at

the K∗ pole in the two-channel case. We further show that the results are simplified in the limit of the

infinitely narrow K∗. In particular, they have the same form as in the previously studied one-channel

problem [19].

2 The B→ K∗ form factors on the lattice

The effective theory of the b→ s transition is based on the weak Hamiltonian

Heff = −
4GF√

2
V∗tsVtb

10
∑

i=1

CiWi , (1)

where GF denotes the Fermi constant, Vts, Vtb are elements of the CKM matrix and the Ci are Wilson

coefficients. The seven B → K∗ form factors are contained in the matrix elements of the W7, W9

and W10 quark bilinear operators (see below). We assume that the contributions of the four-quark

operators to the decay amplitude are small in the low recoil region. Accordingly, the amplitude,

extracted from lattice data, coincides approximately with the full one. This issue is, however, not

settled in the community yet. In particular, the new experimental data should provide more details

regarding the charm-resonance effects (see, e.g., Ref. [23]).

The lattice simulations are performed in a finite spatial volume. It is convenient to choose the

irreducible representations, in which no partial wave mixing occurs. In the present case, these are S-

and P- waves, whereas the neglect of D- and higher partial waves can be justified, if one stays below

multi-particle thresholds. To that end, we consider the decay in the K∗ rest frame:

k = 0, p = q =
2π

L
(0, 0, n), n ∈ Z, (2)

where L denotes the side length of the volume,V = L3. Here, k and p are the four-momenta of the

K∗ and B, respectively, and q = p−k is a momentum transfer to the lepton pair. When the K∗ is not at

rest, only some of the form factors can be extracted without mixing (for more details, see Ref. [22]).

Using the helicity formalism, we choose the current matrix elements in the form

〈V(+)|J(+)|B(p)〉 = −2imV |q|V(q2)

mB + mV

, (3)
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Table 1. Extraction of matrix elements in the irreps without partial-wave mixing

Little group Irrep Form factor

C4v
E V , A1, T1, T2

A1 A0, A12, T23

〈V(0)|i(EB − mV )JA + |q|J(0)

A
|B(p)〉 = −2imV |q|A0(q2), etc., (4)

where EB =

√

m2
B
+ q2 is energy of the B meson, and 〈V(+)|, 〈V(0)| are the state vectors with a

positive circular and longitudinal polarizations, respectively,

〈V(+)| = 〈V(1)| − i〈V(2)|
√

2
, 〈V(0)| = 〈V(3)| , V(λ) ≡ V(0, λ), λ = 1, 2, 3. (5)

Here, the current operators are given by

J(±)
=

1
√

2
s̄(γ1 ± iγ2)b, J

(0)

A
= s̄γ3γ5b, JA = s̄γ4γ5b. (6)

The full set of expressions can be found in Ref. [22]. We denote below these current matrix elements

shortly as FM , M = 1, ..., 7.

In order to determine the values of the form factors at the K∗ resonance pole, it is necessary to

consider lattice simulations in asymmetric boxes (see Ref. [19]). These boxes, which are of the type

L × L × L′, have the same symmetry properties as the symmetric ones boosted in the d = (0, 0, n)

direction. In Table 1, the irreps of the corresponding little group, where the matrix elements should

be measured, are listed. Also, the states 〈V(±)|, 〈V(0)| are created by acting with the following local

field operators, transforming according to these irreps, on the vacuum state 〈0|:

O(±)

E
(0, t) =

1
√

2

∑

x

(

O1(x, t) ∓ iO2(x, t)
)

, O(0)

A1
(0, t) =

∑

x

O3(x, t), (7)

where Oi(x) are spatial components of the vector field (see, e.g., Ref. [24]).

When the K∗ becomes a resonance in lattice simulations, the matrix elements can still be mea-

sured. But now the mass mV is replaced by the discrete total CM energy En of the n-th eigenstate of

the strong Hamiltonian (n = 0, 1, ...). The current matrix elements FM become functions of the En

and |q|: FM
= FM(En, |q|).

3 Lellouch-Lüscher formula

Applying the Lellouch-Lüscher method to a given electroweak process can be conveniently carried

out in the the non-relativistic effective field theory in a finite volume. We use the covariant version

of the theory formulated in Refs. [25, 26]. This approach seems to be algebraically simpler than the

one based on the Bethe-Salpeter (BS) equation (see, e.g., Refs. [27, 28]). The crucial point is that the

results, obtained with these methods, are the same and do not depend on the form of the potential in

the Lippmann-Schwinger equation or BS equation kernel. In other words, the low-energy constants

of the effective Lagrangian will drop out in the final expressions.
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Figure 1. Diagrammatic representation of the B→ K∗ transition in a finite volume. The grey circle, square, and

triangle depict different couplings in the πK − ηK system. The quantities X1, X2 are couplings of the K∗ operator

to the respective channels. The quantities F̄M
α (E, |q|), α = 1, 2, are volume-independent up to exponentially

suppressed contributions

We start with a two-channel Lippmann-Schwinger equation in a finite volume

TL = V + VGLTL. (8)

Here, the potential V can be expicitly written in terms of three real parameters: the so-called eigen-

phases δ1(p1), δ2(p2) and mixing parameter ε(E),

V = 8π
√

s















1
p1

(t1 + s2
εt) − 1√

p1 p2
cεsεt

− 1√
p1 p2

cεsεt
1
p2

(t2 − s2
εt)















, (9)

where tα ≡ tan δα(pα), α = 1, 2, t = t2 − t1, cǫ ≡ cos ǫ(E) and sǫ ≡ sin ǫ(E) . Further, p1 and p2 denote

the relative 3-momenta in the πK and ηK channels, respectively. They are related to the total energy

E through the expressions

p2
1 =
λ(m2

π,m
2
K
, s)

4s
, p2

2 =
λ(m2

η,m
2
K
, s)

4s
, (10)

where s = E2. Note that the potential V is the same as in the infinite volume up exponentially

suppressed contributions. The non-trivial volume dependence is contained in the finite-volume coun-

terpart of the loop integral,

GL =















− p1

8π
√

s
cotφ(p1) 0

0 − p2

8π
√

s
cotφ(p2)















, (11)

where φ(pα), α = 1, 2, are known functions that are related to the Lüscher zeta-function (see, e.g.,

Refs. [22, 24]). Further. the TL-matrix has simple poles at E = En, where En are eigenvalues of the

Hamiltonian in a finite volume,

T
αβ

L
=

fα fβ

En − E
+ · · · . (12)

Here, the quantities f1, f2 are given by

f 2
1 =

8π
√

s

p1

τ2
1
(t2 + τ2 − s2

εt)

f ′(E)

∣

∣

∣

∣

∣

E=En

, f 2
2 =

8π
√

s

p2

τ2
2
(t1 + τ1 + s2

εt)

f ′(E)

∣

∣

∣

∣

∣

E=En

, (13)
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where τα ≡ tanφ(pα), f ′(E) ≡ d f (E)/dE and f (E) ≡ (t1 + τ1)(t2 + τ2) + s2
ε(t2 − t1)(τ2 − τ1). We note

that the eigenvalues E = En also satisfy the two-channel Lüscher equation [12, 29, 30],

(t1 + τ1)(t2 + τ2) + s2
ε(t2 − t1)(τ2 − τ1)

∣

∣

∣

E=En
= 0, (14)

which enables one to extract the scattering parameters δ1(p1), δ2(p2) and ε(E) from lattice data.

The graphs, which contribute to the B → K∗ transition matrix elements in a finite volume, are

shown in Fig. 1. The quantities F̄M
α (E, |q|), α = 1, 2, denote the sum of all two-particle irreducible

graphs in the respective channels. After summing up the bubble graphs, the final result takes a form

|FM(En, |q|)| =
V−1

8πE

∣

∣

∣p1τ
−1
1 f1 F̄M

1 + p2τ
−1
2 f2 F̄M

2

∣

∣

∣

∣

∣

∣

∣

∣

E=En

. (15)

The Eq. (15) is the two-channel analogue of the Lellouch-Lüscher formula (see also Refs. [12, 14]). It

allows one to determine the quantities F̄M
α (E, |q|), α = 1, 2, which are related to the decay amplitudes

AM
1

(B→ πKl+l−) andAM
2

(B→ ηKl+l−) through the two-channel Watson theorem,

AM
1 =

1
√

p1

(uM
1 cεe

iδ1 − uM
2 sεe

iδ2 ), AM
2 =

1
√

p2

(uM
2 cεe

iδ2 + uM
1 sεe

iδ1 ), (16)

where

uM
1 = (

√
p1cεF̄

M
1 +
√

p2sεF̄
M
2 ) cos δ1, uM

2 = (
√

p2cεF̄
M
2 −
√

p1sεF̄
M
1 ) cos δ2. (17)

In comparison with the one-channel case, there is only one equation to determine two unknown vari-

ables F̄M
1

, F̄M
2

and their relative sign. Accordingly, one needs at least three different measurements

at the same energy, which involves the extraction of the excited energy levels (see Ref. [12]). The

alternative options are discussed in Ref. [22].

4 Form factors at the K∗ pole

The current matrix elements involving resonances have the proper field-theoretical meaning only if

they are analytically continued to the resonance pole position. Before this procedure could be carried

out, one should first locate the K∗ resonance position. Assuming that the pole is located on the second

Riemann sheet (II), the T -matrix in the infinite volume is given by

TII =
8π
√

s

h(E)















1
p1

[t1(1 − it2) + s2
εt] − 1√

p1 p2
cεsεt

− 1√
p1 p2

cεsεt
1
p2

[t2(1 + it1) − s2
εt]















, (18)

where the quantity h(E) is given by

h(E) ≡ (t1 − i)(t2 + i) + 2is2
ε(t2 − t1). (19)

The resonance pole position E = ER ≡
√

sR is obtained by solving the equation

h(ER) = 0, (20)

where the (modified) effective range expansion should be applied (see Ref. [22]).

Applying the non-relativistic effective field theory, three-point function in the infinite volume is

given by

i 〈0|T [O(x)JM(0)]|B(p)〉 =
∫

d4P

(2π)4
e−iPx
Γ

M(P, p), (21)
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(ER,0)
(
√

m2
B + q2,q)

(q0,q)

Figure 2. The factorization of the amplitudes at the resonance pole. The photon virtuality, given by Eq. (73), is

complex

where JM(0), M = 1, ..., 7 denote the operators in the current matrix elements and O(x) is a local

operator with quantum numbers of the K∗ that transforms according to the given irrep. Further, the

quantity ΓM(P, p) in the frame Pµ = (P0, 0), pµ = (

√

m2
B
+ q2, q) reads

Γ
M(P, p) = XT [GII(s) +GII(s)TII(s)GII (s)]F̄M(P0, |q|). (22)

Here the loop function GII(s) on the second Riemann sheet takes the form

GII(s) =















− ip1

8π
√

s
0

0
ip2

8π
√

s















. (23)

Next, we define the current matrix elements at the resonance pole as

FM
R = lim

P2→sR

Z
−1/2

R
(sR − P2) Γ(P, p). (24)

where ZR is the (complex) wave-function renormalization constant of the resonance,

ZR = −
1

64π2E2
R

[
2
∑

α=1

(−1)α Xαpα(ER)hα(ER)

]2

. (25)

Here, the quantities h1, h2 are given by

h2
1 = −

8π
√

s

p1

2E(t2 + i − s2
εt)

h′(E)

∣

∣

∣

∣

∣

E=ER

, h2
2 = −

8π
√

s

p2

2E(t1 − i + s2
εt)

h′(E)

∣

∣

∣

∣

∣

E=ER

, (26)

where h′(E) ≡ dh(E)/dE. Separating the pole contribution s = sR in Eqs. (22), one finally obtains

FM
R (ER, |q|) = −

i

8πE

(

p1h1F̄M
1 − p2h2F̄M

2

)

∣

∣

∣

∣

∣

E=ER

. (27)

The corresponding form factors can be read off from the expressions for the current matrix elements,

in which the kinematic factors are low-energy polynomials.

In practice, the pole extraction of the form factors proceeds as follows. The finite-volume matrix

element is measured at different two-particle energies En(L) and a fixed value of |q|. After that, an
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analytic continuation is performed to the complex resonance pole, keeping |q| fixed. Note that the

photon virtuality becomes complex at the pole

q2
=

(

ER −
√

m2
B
+ q2

)2

− q2 . (28)

In fact, the residue of the full amplitude at the pole should factorize in the product of the resonance

form factor and the vertex, describing the transition of a resonance into the final state, see Fig. 2. The

background becomes irrelevant, which leads to the determination of the form factor at the pole in a

process-independent manner. From this figure it is clear that the photon virtuality, defined through

the use of the 4-momentum conservation, coincides with the one given in Eq. (28) and thus must be

complex.

5 Infinitely narrow width

The results presented above simplify considerably in the limit case of a K∗ resonance with an infinitely

narrow width. Here, we have in mind the hypothetical situation, when the pole is located above the ηK

threshold. We have previously considered this limit in study of the ∆Nγ∗ transition [19]. The multi-

channel case is, however, more subtle, since the relations between the infinite- and finite-volume

matrix elements become obscure. Nevertheless, the final results have exactly the same form as in the

one-channel problem.

First, we suppose that the resonance behavior near the Breit-Wigner pole E = EBW emerges in the

quantity t1 = tan δ1, whereas the quantity t2 stays regular in this energy interval:

cot δ1(E) =
EBW − E

Γ/2
. (29)

where Γ denotes the width of the narrow resonance. The scattering amplitude T on the first Riemann

sheet takes the form

Tαβ =
bαbβ

sBW − s − i
√

sBW Γ
+ regular terms at E → EBW , (30)

where sBW = E2
BW

and the regular terms emerge from the contribution of t2. Here, the quantities b1, b2

are given by

b1 =

√

8πsBWΓ

p1

cε , b2 =

√

8πsBWΓ

p2

sε . (31)

Further, it is possible introduce the infinite-volume quantities (“form factors”), which parameterize

the imaginary parts of the decays amplitudesAM
1
, AM

2
in the vicinity of the Breit-Wigner resonance

(see Fig. 3). Denoting them as FM
A

(E, |q|), one obtains

AM
α (E, |q|) =

bαF
M
A

(EBW , |q|)
E2

BW
− E2 − iEBWΓ

+ · · · , α = 1, 2, (32)

where the ellipses stand for the terms emerging from the regular contributions in Eq. (30).

On the real energy axis, taking the limit Γ → 0 in the Lellouch-Lüscher formula, Eq.15, leads to

a simple result (see Ref. [22])

∣

∣

∣FM(En, |q|)
∣

∣

∣ =
V−1

√
2En

∣

∣

∣FM
A (En, |q|)

∣

∣

∣ + O(Γ1/2), En = EBW + O(Γ). (33)
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FM
A FM

A
K∗ K∗

b1 b2

π

K K

η

γ∗ γ∗

B B

Figure 3. Decay amplitudesAM
α , α = 1, 2, in the vicinity of the infinitely narrow K∗. The quantities bα, α = 1, 2,

denote the couplings of the K∗ to the respective channels at E = EBW .

As seen, in the vicinity of the Breit-Wigner resonance, the infinite-volume quantities FM
A

(EBW , |q|) are

equal to the current matrix elements FM(EBW , |q|), measured on the lattice , up to a known normaliza-

tion factor.

The formula Eq. (27), which determines the values of the form factors at the resonance pole, is

simplified in the infinitely narrow width limit as well. One gets

FM
R (ER, |q|)

∣

∣

∣

Γ→0
= FM

A (EBW , |q|) + O(Γ1/2). (34)

As expected, for infinitely narrow resonance, the form factors FM
A

(E, |q|) and FM
R

(E, |q|), defined on

the real energy axis and complex plane, respectively, coincide.

6 Summary

The present work summarizes the results of Ref. [22], in which we have formulated a theoretical

framework for the extraction of the B → K∗ form factors on the lattice. The calculations have been

done conveniently in the non-relativistic effective field theory. By taking into account the possible

admixture of the ηK to πK final states, we have reproduced the two-channel analogue of the Lellouch-

Lüscher formula. This result enables one to extract the B→ K∗l+l− decay amplitude in the low-recoil

region.

Due to the resonance nature of the K∗, we have given a field-theoretical definition of the current

matrix elements, which is free of process-dependent ambiguities. It implies an analytic continuation

in the complex energy plane to the complex resonance pole position. Accordingly, we have derived

the formula for the determination of the B→ K∗ form factors at the K∗ pole.

Finally, we have showed that the results are considerably simplified in the vicinity of the infinitely

narrow resonance. This limit is more involved in the multi-channel case than in the previously consid-

ered one-channel problem. Still, even in the multi-channel case, the current matrix elements measured

on the lattice are equal to the ones in the infinite volume, up to a normalization factor that does not

depend on the dynamics.
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