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Abstract. The quark-gluon plasma created in a relativistic heavy-ion collisions possesses
a sizable pressure anisotropy in the local rest frame at very early times after the initial nu-
clear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic
theory picture, this translates into the existence of sizable momentum-space anisotropies
in the underlying partonic distribution functions, 〈p2

L〉 � 〈p
2
T 〉. In such cases, it is bet-

ter to reorganize the hydrodynamical expansion by taking into account momentum-space
anisotropies at leading-order in the expansion instead of as a perturbative correction to
an isotropic distribution. The resulting anisotropic hydrodynamics framework has been
shown to more accurately describe the dynamics of rapidly expanding systems such as
the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of
anisotropic hydrodynamics, recent progress, and present a few preliminary phenomeno-
logical predictions for identified particle spectra and elliptic flow.

1 Introduction

The phenomenological application of viscous hydrodynamics to the dynamics of the quark-gluon
plasma (QGP) created in heavy-ion collisions has been tremendously successful [1–3]. Despite this
success, there are spacetime regions where standard viscous hydrodynamics is being pushed beyond
its limits, such as at very early times after the initial heavy-ion collision τ < 1 fm/c and near the
(semi)-dilute edges of the system. In these spacetime regions, viscous hydrodynamics itself tells
you that there may be trouble, since the shear Knudsen number, Knπ = τπ∂µuµ, and the inverse
Reynolds number, R−1

π =
√
πµνπµν/Peq, can become quite large. The situation gets worse as the

beam energy is decreased or one considers small collision systems such as pA and pp. Additionally,
when one wants to compute observables other than soft hadron production, such as heavy quarkonium
suppression, photon emission, dilepton emission, etc. one traditionally employs a kinetic description
which requires knowledge of the full momentum dependence of the underlying parton distribution
function(s), f (x, p). In standard viscous hydrodynamics approaches, f (x, p) is expressed as power
series with the leading term being the isotropic thermal contribution and the shear and bulk corrections
to isotropic equilibrium being expressed as polynomials in the momenta. As a result, one cannot
necessarily trust the high-momentum limit of production rates since this maps to regions in which the
partonic distributions functions can become negative.

In order to address these problems, in Refs. [4, 5] it was first shown that, in the context of rel-
ativistic transport theory, one could change the ansatz for the expansion point for the distribution
function and use this reorganized expansion to derive so-called anisotropic hydrodynamics (aHydro).
In Ref. [5], in particular, it was shown that, for a 0+1d boost invariant system, aHydro could reproduce
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both the ideal and free streaming limits of the dynamics and that, in the limit of small anisotropies,
the dynamical equations reduced identically to those of Israel-Stewart viscous hydrodynamics. Since
these two original papers, there has been a great deal of progress in anisotropic hydrodynamics [4–
16] including applications to cold atomic gases near the unitary limit [17, 18]. In parallel, there have
been efforts to construct exact solutions to the Boltzmann equation in some simple cases which can be
used to test the efficacy of various dissipative hydrodynamics approaches and it has been shown that
anisotropic hydrodynamics most accurately reproduces all known exact solutions even in the limit
of very large η/s and/or initial momentum-space anisotropy [15, 19–24]. The recent focus has been
on turning aHydro into a practical phenomenological tool which has a realistic equation of state and
self-consistent anisotropic hadronic freeze-out in order to make comparisons to experimental data. In
this proceedings, I review the moment formulation of aHydro which begins with an ansatz for the
leading-order one-particle distribution that contains a symmetric anisotropy tensor which allows for
multiple anisotropy parameters. I present some preliminary comparisons with experimental data from
LHC 2.76 TeV Pb-Pb collisions and provide an outlook for the future.

2 Formalism

2.1 Distribution function ansatz

Typically, when one derives dissipative hydrodynamics from transport, the starting assumption is that
the distribution function can be expanded around an assumed state of isotropic equilibrium with all
non-equilibrium corrections collected into “perturbative corrections” which are typically expressed
as an orthogonal polynomial expansion in the momentum contracted with the viscous stress tensor
[25, 26]. In aHydro, one instead replaces the leading-order term in this series by an anisotropically
deformed distribution function of the form [6, 8, 9]

f (x, p) ≡ feq

(√
pµΞµν(x)pν/λ(x)

)
, (1)

with λ being a local temperature-like scale and Ξµν ≡ uµuν + ξµν − Φ∆µν being the anisotropy tensor,
which parametrizes the anisotropic form of distribution function. In the definition of Ξµν, uµ is fluid
four-velocity, ξµν is a traceless symmetric anisotropy tensor, Φ is related to the bulk-viscous pressure
correction, and ∆µν ≡ gµν − uµuν projects out components of a four-vector which are transverse to
uµ. The quantities entering the ansatz obey uµuµ = 1, ξµµ = 0, and uµξµν = uµ∆µν = 0. Since
ξµν is transverse to uµ it can be expanded in terms of spacelike basis vectors Xµ, Yµ and Zµ which
satisfy uµXµ = uµYµ = uµZµ = 0. The ansatz (1) contains information about both shear and bulk
corrections at leading order [9]. In what follows, we assume the distribution to be of Boltzmann form,
i.e. fiso(p) ≡ exp (−p) and that the anisotropy tensor ξµν is diagonal in the local rest frame (LRF)

ξµν(x) = ξx(x)XµXν + ξy(x)YµYν + ξz(x)ZµZν . (2)

Since ξµν is traceless, there are only two independent anisotropies. In practice, it is convenient
to parameterize these two independent degrees of freedom and the Φ parameter in terms of three
momentum-space ellipticities

αi ≡ (1 + ξi + Φ)−1/2 , (3)

in which case, under the assumption that the anisotropy tensor is diagonal in the LRF, allows us to
write simply

f (x, p) = feq

 1
λ(x)

√√∑
i

p2
i

α2
i (x)

+ m2

 . (4)
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2.2 Equations of motion

In anisotropic hydrodynamics, the equations of motion are obtained from moments of the Boltzmann
equation

pµ∂µ f = −C[ f ] , (5)

with the collisional kernel taken in the relaxation time approximation (RTA)

C[ f ] =
pµuµ
τeq(x)

[ f − feq(|p|,T (x))] . (6)

In what follows, we have used the first and second moments, which result in equations of the form

∂µT µν = 0 ,

∂µIµνλ =
uµ
τeq

(Iµνλeq − Iµνλ) ,
(7)

where T µν is the energy-momentum tensor consistent with Eq. (4) and Iµ1···µn is defined by

Iµ1···µn ≡ Ndof

∫
d3 p

(2π)3

pµ1 · · · pµn

E
f (x, p) (8)

where Ndof is the number of degrees of freedom. The general equilibrium tensor Iµ1···µn
eq is the same

with f (x, p) → feq(|p|,T (x)). In terms of the general moments, Iµ1···µn , one has Nµ = Iµ, T µν = Iµν,
etc. With the assumption that the anisotropy tensor is diagonal, we need equations of motion for
the three ellipticities, three independent components of uµ, and λ. We obtain these from the four
equations for energy-momentum conservation and three diagonal projections of the second moment
equation. The local effective temperature T (x) is determined by Landau-matching, which requires
that the equilibrium and non-equilibrium energy densities are the same at all points in spacetime, i.e.
ε(~α, λ) = εeq(T ).

2.3 Equation of State

If the QGP is anisotropic in momentum-space it is not obvious how one should implement a realistic
lattice-based equation of state since this is an implicitly equilibrium concept. There are currently two
approaches being followed in the literature. In the first, dubbed the standard approach, one obtains
the dynamical equations necessary in the conformal limit, m→ 0. In this limit, the components of T µν

multiplicatively factorize and one can then connect the isotropic parts of energy density and pressures
using a realistic EoS [27]. In the second approach, dubbed the quasiparticle approach, one assumes
that the system is comprised of quasiparticles with a temperature-dependent mass, m→ m(T ), which
is fit to lattice QCD data [13, 16]. The quasiparticle method is more self-consistent in the way breaking
of conformal invariance is implemented, however, at the moment it is infeasible to use for 3+1d
simulations. For this reason, in the results presented herein we will use the standard method for
implementing the equation of state. For the underlying realistic equilibrium EoS we used the Krakow
parametrization of lattice data which is matched onto a hadron resonance gas at low temperatures [28].

2.4 Freezeout

As the system cools, the QGP undergoes a crossover from quark and gluons to hadronic degrees of
freedom which subsequently freeze out kinetically when their mean free path becomes large. In order
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to compare the result of hydrodynamic models to experimental data, one needs to calculate the differ-
ential particle spectra at freezeout. In practice, we construct a constant energy density hypersurface,
defined through the effective temperature TFO = ε−1(εFO). Then, by computing the number of par-
ticles that cross this hypersurface, one can determine the number of hadrons produced in heavy-ion
collisions at the freezeout using (

p0 dN
d3 p

)
i
=
Ni

(2π)3

∫
fi(x, p) pµd3Σµ , (9)

where i labels the hadronic species,Ni ≡ (2si +1)(2gi +1) is the degeneracy factor with si and gi being
the spin and isospin of the state in question, and fi is the distribution function for particle species i
taking into account the appropriate quantum statistics. For each species, we assume that the same
anisotropic distribution function form can be used [16, 27].

3 Computational setup

3.1 Initial Conditions

In order to solve the aHydro dynamical equations one has to choose initial conditions at τ = τ0, i.e. for
3+1d aHydro with only diagonal anisotropies in the LRF, one needs seven three-dimensional profiles:
λ(τ0, x⊥, ς), ~α(τ0, x⊥, ς), and ~u(τ0, x⊥, ς), where ς is the spatial rapidity. In this work, we assume that
the initial transverse profile for the effective temperature (determined via Landau matching) is given
by the optical Glauber model. We assume that the initial energy density is proportional to the scaled
initial density of the sources such that the initial effective temperature is

T (τ0, x⊥, ς) = ε−1
(
ε0
ρ(b, x⊥, ς)
ρ(0, 0, 0)

)
, (10)

where b is the impact parameter and the proportionality constant ε0 is chosen in such a way as to
correspond to a given central temperature, T0 = ε−1(ε0).

The density of sources is constructed using the following mixed model

ρ(b, x⊥, ς) ≡
[
(1 − κ)(ρ+

WN(b, x⊥) + ρ−WN(b, x⊥)) + 2 κ ρBC(b, x⊥)
]
ρL(ς − ςS (b, x⊥)) , (11)

where ρ±WN is the density of wounded nucleons from the left/right-moving nuclei and ρBC is the density
of binary collisions, both of which are obtained using the optical limit of the Glauber model

ρ±WN(b, x⊥) ≡ T
(
x⊥∓

b⊥
2

)[
1−e−σinT

(
x⊥± b⊥

2

)]
; ρBC(b, x⊥) ≡ σinT

(
x⊥+

b⊥
2

)
T

(
x⊥−

b⊥
2

)
. (12)

The longitudinal profile is taken to be

ρL(ς) ≡ exp
[
−

(ς − ∆ς)2

2σ2
ς

Θ(|ς| − ∆ς)
]
. (13)

For the LHC case studied here, we use κ = 0.145 for the mixing factor and an inelastic cross-
section of σin = 62 mb. The parameters in the longitudinal profile (13) were fitted to reproduce the
pseudorapidity distribution of charged particles, with the results being ∆ς = 2.5 and σς = 1.4 and the
shift in rapidity was calculated according to the formula [29]

ςS ≡
1
2

ln
ρ+

WN + ρ−WN + vP(ρ+
WN − ρ

−
WN)

ρ+
WN + ρ−WN − vP(ρ+

WN − ρ
−
WN)

, (14)
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cmin cmax bmin bmax 〈b〉

0. 0.05 0 3.473 2.315
0.05 0.1 3.473 4.912 4.234
0.1 0.2 4.912 6.946 5.987
0.2 0.3 6.946 8.507 7.753
0.3 0.4 8.507 9.823 9.181
0.4 0.5 9.823 10.983 10.414

cmin cmax bmin bmax 〈b〉

0.5 0.6 10.983 12.031 11.515
0.6 0.7 12.031 12.995 12.519
0.7 0.8 12.995 13.893 13.449
0.8 0.9 13.893 14.795 14.334
0.9 1. 14.795 20 15.608

where all functions are understood to be evaluated at a particular value of b and x⊥. The participant

velocity is defined as vP ≡

√
(
√

s/2)2 − (mN/2)2/(
√

s/2), mN is the nucleon mass, and
√

s is the
center-of-momentum collision energy. In Eq. (12) we have made use of the thickness function

T (x⊥) ≡
∫

dz ρWS(x⊥, z) , (15)

where the nuclear density is given by the Woods-Saxon profile

ρWS(x⊥, z) ≡ ρ0

1 + exp

 √
x⊥2 + z2 − R

a

−1

. (16)

For Pb-Pb collisions, we use ρ0 = 0.17 fm−3 for the nuclear saturation density, R = 6.48 fm for the
nuclear radius, and a = 0.535 fm for the surface diffuseness of the nucleus.

In the calculations presented herein, we assumed that the produced matter has no initial transverse
flow, i.e. ux(τ0, x⊥, ς) = ux(τ0, x⊥, ς) = 0, while the initial longitudinal flow is of Bjorken form
uz(τ0, x⊥, ς) = z/t. For simplicity, in this work the initial anisotropy parameters are assumed to be
homogeneous and isotropic, ~α(τ0, x⊥, ς) = 1.

3.2 Numerical methods

We solve the 3+1d aHydro equations on a lattice with spacing a⊥ = 0.2 fm and aζ = 0.2 with
Nx = Ny = Nς = 128. For temporal updates we used 4th-order Runge-Kutta with a temporal step
size of ε = 0.01 fm/c. A weighted LAX scheme with a rather small weighting factor of λ = 0.01
was used to regulate possible numerical instabilities associated with shock-wave formation [6]. We
varied the centrality of the collision by setting the impact parameter to the average value expected
in each centrality class according to the optical Glauber model as indicated in Table 1. Each of the
configurations was evolved until the maximum effective temperature in the entire volume was below
120 MeV. From each of these results, a freeze-out hypersurface corresponding to a fixed effective
temperature was extracted. The microscopic parameters ~α, ~u, and λ on the hypersurface were then fed
to a version of THERMINATOR 2 which had been modified to account for an ellipsoidal distribution
function [30]. THERMINATOR 2 produces sampled event-by-event hadronic production from the
exported freezeout hypersurface and also performs hadronic feed down (resonance decays) for each
sampled event.
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maximum impact parameter in that class (bmin, bmax), and the average impact parameter 〈b〉.
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Figure 1. Comparison of aHydro model predictions with experimental data for π+ (blue), K+ (red), and p
production (green). The left panel shows the particle spectra in the 0-5% centrality class and the right panel
shows v2 in the 20-30% centrality class, both as a function of transverse momentum pT . The best fit corresponded
to T0 = 0.56 GeV, TFO = 0.13 GeV, and 4πη/s = 3. Data shown are from the ALICE collaboration [31, 32].
Experimental error bars shown are statistical only.

4 Results

Herein we consider LHC 2.76 TeV Pb-Pb collisions and compare to experimental data available
from the ALICE collaboration [31, 32]. Using the initial conditions specified previously, we varied
4πη/s ∈ {1, 2, 3} and, in each case, varied the initial central temperature T0 and the freeze-out tempera-
ture TFO and compared with ALICE data. From our preliminary analysis, the values of T0 ' 560 MeV
and TFO ' 130 MeV gave the best fit to the spectrum and v2.

In Fig. 1 we show the resulting π+, K+, and p transverse momentum spectrum in the 0-5% cen-
trality class (left) and v2 in the 20-30% centrality class (right). As can be seen from this figure, the
model does a very good job reproducing the identified particle v2 in the 20-30% centrality class; how-
ever, we see significant deviations in the low-pT π+, K+, and p spectra. This discrepancy is most
likely a result of the “standard method” for implementing a realistic equation of state. As was shown
in Ref. [16], one finds that the standard method significantly underestimates the number of low pT

hadrons, whereas the quasiparticle method for implementing the equation of state is in better agree-
ment with standard second-order viscous hydrodynamics at low pT .

In Fig. 2 we show two results. In the left panel, we show the charged particle v2 as a function of
pT in the 30-40% centrality class and on the right we show the pT -integrated charged particle v2 as
a function of centrality. As can be seen from the left panel, there is reasonable agreement between
the aHydro model employed herein and the charged particle v2. In the right panel, we show three
results corresponding to 4πη/s ∈ {1, 2, 3} which are indicated in red, blue, and green, respectively,
and are ordered from top to bottom at 35% centrality, respectively. As we can see from the right panel
there is disagreement between the model and the data for very central events. This is to be expected
since we used smooth optical Glauber initial conditions. All v2 generated in central collisions is due
to fluctuations and, in the first two centrality classes, there are significant contributions to v2 from
initial state fluctuations. In the peripheral centrality classes we also note that the model prediction
falls more quickly to zero than the data seem to indicate; however, we note there is a large systematic
error associated with the reported v2 in the most peripheral centrality class. Finally, we note that the
maximum model sensitivity to the assumed values of η/s occurs at around 40% centrality.
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Figure 2. Comparison of aHydro model predictions with experimentally measured charged particle v2 as a
function of pT in the 30-40% centrality class (left) and the pT -integrated charged particle v2 as a function of
centrality (right). Data shown are from the ALICE collaboration [31, 32]. Experimental error bars shown are
statistical only.

5 Conclusions

In this proceedings, I have reviewed recent progress in anisotropic hydrodynamics. The anisotropic
hydrodynamics framework has been checked against exact solution of the Boltzmann equation in
some non-trivial but simple cases in which exact solution is possible and one finds that, in all cases
considered, the anisotropic hydrodynamics approach most accurately reproduces the evolution of the
system. Building on this success, the current focus of the aHydro program is to turn the formalism into
a practical phenomenological tool that can be used to model the non-equilibrium dynamics of the QGP
created in AB nuclear collisions including pA and, down the road, pp collisions. As demonstrated
herein, significant progress in this direction has been made. We now have functioning 3+1d versions
of leading-order aHydro which include multiple anisotropy parameters that are associated with the
shear and bulk corrections to the distribution function.

The code now includes “anisotropic freeze-out” which is tightly integrated with a customized ver-
sion of THERMINATOR 2, which takes care of the final hadronic production and resonance decays.
Comparisons with ALICE data indicate that, even given the fact that we are using smooth Glauber
initial conditions, the model is able to reproduce the qualitative features of the data overall, but in the
case of the pT -differential v2 we find very promising agreement between the 3+1d aHydro results and
experimental data. The key standout phenomenologically lies in our inability to properly fit the low
pT part of the hadronic spectra. We have suggested that this is due to an inconsistency inherent in
the standard method for implementing the equation of state in aHydro. Looking to the future, we are
currently working on optimizing the quasiparticle aHydro approach in order to make it feasible to use
in 3+1d simulations. Initial testing shows that this will be possible and offers hope that one can have
a self-consistent way to implement conformal symmetry breaking while at the same time having an
efficient code. This will become critical as we begin explorations of fluctuating initial conditions.
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