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Abstract. We calculate the potential between static quarks in the fundamental repre-
sentation of the F4 exceptional gauge group using domain structures of the thick center
vortex model. As non-trivial center elements are absent, the asymptotic string tension is
lost while an intermediate linear potential is observed. SU(2) is a subgroup of F4. In-
vestigating the decomposition of the 26 dimensional representation of F4 to the SU(2)
representations, might explain what accounts for the intermediate linear potential, in the
exceptional groups with no center element.

1 Introduction

Quarks -the fundamental particles of nature- interact via non-Abelian gauge fields namely gluons.
However, no isolated quark and gluon have been detected in labs yet, which is traditionally called
quark confinement. In fact, confinement could be related to the formation of an electric flux tube and
a linear potential between static quarks. To study confinement, there are vast variety of methods, from
Lattice Gauge Theory to different Phenomenological Models. In the latter, QCD vacuum is assumed
to be filled with topological field configurations such as magnetic monopoles, center vortices, merons
and caloron gas [1]. These objects cause the expectation value of a large Wilson loop to obey the
area-law falloff which implies a linear potential between static quarks.

In the center vortex model that has been put forward by G.’t Hooft [2], the potential between
static color sources is a result of the interaction between center vortices and Wilson loop. A center
vortex is a topological field configuration which is Line-like (in D = 3 dimensions) or Surface-like
(in D = 4 dimensions) having some finite thickness. A center vortex carries quantized magnetic flux
with respect to the non-trivial center elements of the gauge group [3]. The original center vortex
theory was capable of explaining quark confinement at large distances, yet unqualified to illustrate the
intermediate linear potential, in particular, for higher representations. The thick center vortex model
[3] is the generalization of this theory that produces the intermediate linear potential consistent with
Casimir scaling for higher representations, qualitatively.

In an attempt to understand what feature of vacuum fluctuations accounts for Casimir scaling at
intermediate distances, Greensite et al. have improved the previous model using both trivial and non-
trivial center elements resulting in the vacuum domain structure model [4]. Using the thick center
vortex model with the idea of vacuum domain structures, Deldar et al. have found the potential
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between static color sources in the G2 gauge group [5],[6],[7]. Their results are compatible with
numerical Lattice calculations for the G2 gauge group [8],[9],[10],[11]. As a trivial result, the potential
of every representation is screened at large distances, since G2 gauge group contains only one trivial
center element. The intermediate linear potential is claimed to be related to the SU(2) and SU(3)
subgroups of the G2 gauge group.

In this paper, we calculate the potential between static quarks in the fundamental representation
of the F4 group. We try to interpret the confinement of quarks at intermediate distances by means
of the subgroups of F4, using the same procedure done by Deldar et. al for the G2. In Sec. 2 we
introduce the thick center vortex and vacuum domain structure models, briefly. Some properties of
F4 exceptional group and its subgroups are presented in Sec. 3. In Sec. 4, we apply the thick center
vortex model to F4 and by plotting the group factor of this group, we claim that confinement is the
outcome of the center elements of the F4 subgroups.

2 Thick Center Vortex Model with Trivial and Non-Trivial Center Elements

In the thick center vortex model, the potential between static color sources is the result of the interac-
tion between thick center vortices and Wilson loop, which could be partially or completely. In an at-
tempt to increase the intermediate linear regime, it was assumed that both center vortices and vacuum
domains exist in the QCD vacuum [4]. Center vortices are quantized to non-trivial center elements,
while vacuum domains are quantized to the trivial one and carry a zero magnetic flux. Therefore, the
potential energy between static sources induced by center vortices and vacuum domains is

V(R) = −

+∞∑
m=−∞

ln

1 −
N−1∑
n=0

fn(1 − ReGr[~α
(n)
C (xm)])

 , (1)

in which xm = m + 1
2 is the location of the center of the vortex. fn is the probability that any plaquette

on the lattice is pierced by a vortex type n . n = 0 represents the vacuum domain and n = 1, · · · ,N − 1
indicates the center vortices. C represents the Wilson loop and the group factor, Gr[~α(n)], is

Gr

[
~α(n)

]
=

1
dr

Tr exp
[
i ~α(n). ~H

]
, (2)

where the Hi’s,
{
i = 1, · · · ,N − 1

}
are the generators spanning the Cartan sub-algebra and dr is the

dimension of the representation r. α(n)
C (x) indicates the vortex profile function and depends on what

fraction of the vortex flux enters the loop C. Thus, it depends on both the shape of the loop C, and the
position x of the center of the vortex core, relative to the perimeter of the loop. Vortices which pierce
the plaquettes far from Wilson loop do not have any effect on the loop. In addition, when the distance
R between the quark and anti-quark goes to zero, the percentage of the vortex core which is inside the
loop must go to zero. Moreover, when the vortex core is completely inside the Wilson loop area, then
the influence of the vortex on the Wilson loop is given by a center element:

exp
[
i~α(n). ~H

]
= znI (3)

There are different ansatzes which satisfy these conditions. One of them, introduced in Ref. [3], is as
the following:

~α(n)
i =

αn(max)
i

2
[1 − tanh(a y(x) +

b
R

], (4)

where R represents the space-extent of the Wilson loop with finite but large time-extent and x deter-
mines the position of the vortex core. a is proportional to the inverse of the vortex thickness. The
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parameter b introduces a dependency on the space-extent R of the Wilson loop into the vortex profile.
The value of αn(max)

i is calculated from the condition of Eq. (3) and y(x) is

y(x) =

x − R for |R − x| ≤ |x|
−x for |R − x| > |x|.

(5)

3 Some Properties of F4 Exceptional Group

In general, there are five distinguishable exceptional groups named as G2, F4, E6, E7 and E8. The
subscripts point out the rank of the groups. Therefore, F4, similar to SU(5) , has rank 4 and possesses
four Cartan generators and four simple roots. It is, in terms of the size, the second exceptional lie
group. The fundamental and adjoint representations of F4 are 26 and 52 dimensional representations.
The universal covering group of F4 is the group itself and all the irreducible representations are real.
So, there will be no complex conjugate in this group. F4 has three maximal regular subgroups: SO(9);
SU(3)×SU(3) and SP(6)×SU(2) which could be obtained from extended Dynkin diagram. In addition,
it has two maximal singular subgroups including SU(2) and G2 × SU(2).

Four Cartan generators of F4 are [12]:

H1 = D5
5 + D6

6 − D7
7 + D8

8 − D9
9 − D10

10 , (6)

H2 = D3
3 + D4

4 − D5
5 − D6

6 + D10
10 − D11

11 , (7)

H3 =
1
2

(D2
2 − 2D3

3 − D4
4 + D6

6 − D8
8 + D9

9 − D10
10 + D11

11 − D12
12) , (8)

H4 =
1
2

(−2D2
2 + D3

3 − D4
4 + D5

5 − D6
6 + D7

7 − D9
9 + D12

12 − D13
13) . (9)

where Dab = Iab − Iba and Iab is the 26 × 26 matrix with elements as follows :

(Iab) j k = δa j δb k, (10)

where labels j and k have the same value as a and b such that a, b : −13 6 j, k 6 13. It should be
noted that by using the standard normalization condition

Tr [HaHb] =
1
2
δab, (11)

the normalization factors N1 = N2 = 1
2
√

6
and N3 = N4 = 1

2
√

3
are obtained for H1 to H4, respectively.

In this paper, we report the results of the decomposition of F4 to SU(2) × G2. According to
the branching rule of F4, the fundamental representation might be decomposed into the mentioned
subgroups as the following [14],[15] :

26 = (5, 1) ⊕ (3, 7) = 5{1} ⊕ 3{7}. (12)

The first number in the parentheses represents the dimension of the irreducible representations of the
SU(2) and the second one belongs to the G2 gauge group. By adopting the same approach used in
Refs.[6],[7] and utilizing Eq. (12), we can reconstruct the Cartan generator H of F4 for the fundamen-
tal 26-dimensional representation:

H26
F4 ⊃ SU(2)⊕G2

=
1
√

3
diag

[
0 0 0 0 0 H7

8 H7
8 H7

8

]
(13)
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where H7
8 is the Cartan generator of G2 [6]:

H7
8 =

1
√

6

σ
2
3 0 0

0 σ2
3 0

0 0 σ3
3

 (14)

where σ2
3 and σ3

3 are the Cartan generators of SU(2) in the fundamental and adjoint representations,
respectively. It should be mentioned that the Cartan generator of Eq. (14) has been constructed from
the decomposition of the fundamental 7-dimensional representation of the G2 to its SU(2) subgroups:

7 = (2, 2) ⊕ (1, 3) = 2{2} ⊕ {3}. (15)

Using Eqs. (12) and (15), Z26, the center element of the SU(2) ×G2 subgroup, could be written as
follows:

Z26 = diag (1, 1, 1, 1, 1, zI2×2, zI2×2, I3×3, zI2×2, zI2×2, I3×3, zI2×2, zI2×2, I3×3) , (16)

in which z = eiπ is the non-trivial center element of the SU(2) and I is the unit matrix.

4 Potentials of the F4 Exceptional Group

To acquire αmax
i , we use the condition of Eq. (3) and obtain 12 independent equations. Solving these

equations, we obtain different sets of answers that differ by a coefficient. One set is

αmax
1 = 2π

√
24 ; αmax

2 = 6π
√

24 ; αmax
3 = 4π

√
48 ; αmax

4 = 2π
√

48 (17)

Fig. 1 shows V(R) versus R ∈ [0, 100] for the 26-dimensional fundamental representation. The free pa-
rameters of the model has been chosen as f0 = 0.1, a = 0.05 and b = 4. Screening is clearly observed
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Figure 1. The Potential between two static sources in
the fundamental representation of the F4. Screening
is clearly observed at large quark separations while
the potential is linear at intermediate distances.

at large quark separations but what accounts for the linearity of the potential at intermediate distances?
We try to relate the intermediate linearity to the subgroups of F4. So, we apply the model to SU(2)×G2
subgroups of F4. Utilizing Eqs. (16) and (13) in the condition exp(iαmax

SU(2)⊕G2
H26

F4 ⊃ SU(2)⊕G2
) = Z26, we

attain αmax
SU(2)⊕G2

= 2π
√

18. Using this value, we are able to calculate the potential of Eq. (1) for the
SU(2) subgroup of F4.

Fig. 2 represents the potential of the fundamental representation of F4 itself and when it is decom-
posed to its subgroup in the range R ∈ [0, 100]. The free parameters of the model have been chosen
as f = 0.1, a = 0.05 and b = 4. To be more accurate, at the interval R ∈ [9, 14], the discrepancy
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Figure 2. Left digram: The potentials for the F4 and its subgroup SU(2) ×G2 in the fundamental representation
in the range R ∈ [0, 100]. Right diagram: The same the left diagram but for R ∈ [9, 14]. The two curves are
nearly parallel to each other.
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Figure 3. The group factor ReG f [α] versus the
location x of the center of the vortex. This factor
changes between 1 and 0.08.

between the slopes of the two curves is about 0.8%. So, it seems that subgroups of F4 can interpret
the linearity of the potentials at intermediate distances.

Investigating the behavior of the group factor G f [~α], for the fundamental representation of F4,
might be interesting. Fig. 3 pictures the real part of the group factor of the fundamental representation
of the F4 group in the range [−200, 300]. It is clear that the maximum value of ReG f [α] is equal to 1
when the vortex core is far from the Wilson loop or when it is completely inside it. The lower limit
for the real part of the group factor equals to 0.08. Using the same method in Refs.[5],[6],[7] one may
write:

min
{
ReG f [~α(x)]

}
SU(2)⊕G2

=
1

26
Re

[
Tr

(
exp(iαH)

)
min

]
=

1
26

ReTr
(
Z26

)
=

1
26

(5 − 2 − 2 + 3 − 2 − 2 + 3 − 2 − 2 + 3)

= 0.0769 ' 0.08
(18)
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5 Conclusion

The simple phenomenological thick center vortex model has been applied to the F4 exceptional group.
The potential between quarks in the fundamental representation is screened at large distances due to
the absence of non-trivial center elements. While, confinement is observed in the form of linearity of
the potential at intermediate regime. Hence, the exceptional group F4 might represent the possibility
of confinement without the center. Despite unavailable Lattice Monte Carlo calculations concerning
F4, one might claim that the results it similar to G2 and could be another laboratory to study the
existence of confinement in groups with the trivial center. On the other hand, arguments about the
reason of the linearity of the potential has led to the agreement on the imposing the role of SU(2)
as a subgroup of F4 in the structure of SU(2) × G2 . It appears as if the F4 QCD is dominated by
SU(2) center elements. Ultimately, for future research, the role of other subgroups of F4 and also the
potential of the adjoint representation are under investigations.
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