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Abstract. An analysis is presented of the expectations for particle production in collisions
of small nuclei using the thermal model. The maxima observed in particle ratios of

strange particles to pions as a function of beam energy in heavy ion collisions, are reduced

when considering smaller nuclei. Of particular interest is the Λ/π+ ratio which shows a

strong maximum surviving even in collisions of small nuclei.

1 Introduction

A large effort is presently under way to study not only heavy- but also light-ion collisions. This is

being motivated by the results obtained in heavy ion collisions like Pb-Pb and Au-Au, for the K+/π+,
and also other particle ratios. It has been conjectured that these indicate a phase change in nuclear

matter [1].

A consistent description of particle production in heavy-ion collisions, up to LHC energies, has

emerged during the past two decades using a thermal-statistical model (referred to simply as thermal

model in the remainder of this talk). It is based on the creation and subsequent decay of hadronic

resonances produced in chemical equilibrium at a unique temperature and baryon chemical poten-

tial. According to this picture the hadronic resonances made up of the light flavors are produced in

chemical equilibrium.

Indeed some particle ratios exhibit interesting features when studied as a function of the beam

energy: (i) a maximum in the K+/π+ratio, (ii) a maximum in the Λ/π ratio, (iii) no maximum in the

K−/π−ratio. The maxima occur at a center-of-mass energy of around 10 GeV [2–4]. It is interesting

to note that the occurrence of these maxima happens in an energy regime where a maximum baryon
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density occurs [5] and a transition from baryon-dominated freeze-out to a meson dominated one takes

place [4]. An alternative interpretation is that these maxima reflect a phase change [1] to a deconfined

state of matter.

The maxima mark a distinction between heavy-ion collisions and p-p collisions as they are not

observed in the latter. This shows a clear difference between the two systems which is worthy of

investigation.

It is the purpose of the present talk to report on an analysis [6] studying the transition from a small

system like a p-p collision to a large system like a Pb-Pb or Au-Au collision and to follow the genesis

of the maxima in certain particle ratios.

2 The model

A relativistic heavy-ion collision will go through several stages. At one of the later stages, the system

will be dominated by hadronic resonances. The identifying feature of the thermal model is that all the

resonances as listed by the Particle Data Group [7] are assumed to be in thermal and chemical equi-

librium, an assumption which drastically reduces the number of free parameters and thus this stage

is determined by just a few thermodynamic variables namely, the chemical freeze-out temperature T ,
the various chemical potentials μ determined by the conserved quantum numbers and by the volume

V of the system. The latter plays no role when considering ratios of yields. It has been shown that this

description is also the correct one [8–11] for a scaling expansion as first discussed by Bjorken [12].

In general, if the number of particles carrying quantum numbers related to a conservation law is

small, then the grand-canonical description no longer holds. In such a case conservation of quantum

numbers has to be implemented exactly in the canonical ensemble [13, 14]. In the case considered here

there are two volume parameters: the overall volume of the system V , which determines the particle

yields at fixed density and the strangeness correlation (cluster) volume Vc, which reflects the canonical

suppression factor and reduces the densities of strange particles. The volume Vc is parameterized by

the radius RC which serves as a free parameter and defines the range of local strangeness equilibrium.

We start by presenting a brief reminder of the general concepts of the thermal model. In the

grand-canonical ensemble, the volume V , temperature T and the chemical potentials �μ determine the

partition function Z(T,V, �μ). In the hadronic fireball of non-interacting hadrons, lnZ is the sum of the

contributions of all i-particle species of energy Ei and spin-isospin degeneracy gi by

1

V
lnZ(T,V, �μ) =

∑
i

Z1
i (T, �μ), (1)

where �μ = (μB, μS , μQ) are the chemical potentials related to the conservation of baryon number,

strangeness and electric charge, respectively.

The one-particle partition function is given, in Boltzmann approximation, by

Z1
i ≡

gi

2π2
m2

i T K2

(mi

T

)
exp(μ). (2)

The partition function contains all information needed to obtain the number density ni of particle

species i. Introducing the particle’s specific chemical potential μi, one gets

ni(T, �μ) =
1

V
∂(T lnZ)
∂μi

∣∣∣∣∣
μi=0

. (3)
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Any resonance that decays into species i contributes to the yields eventually measured. Therefore, the

contributions from all heavier hadrons j that decay to hadron i with the branching fraction Γ j→i are

ndecayi =
∑

j

Γ j→i n j. (4)

Consequently, the final yield Ni of particle species i is the sum of the thermally produced particles and

the decay products of resonances,

Ni = (ni + ndecayi ) V. (5)

From (3-5) it is clear that in the grand canonical ensemble the particle yields are determined by the

volume of the fireball, its temperature and the chemical potentials.

In general, if the number of particles is small, then the grand-canonical description no longer holds.

In such a case conservation laws have to be implemented exactly. We refer here only to strangeness

conservation and consider charge and baryon number conservation to be fulfilled on the average. The

density of strange particle i carrying strangeness s can be obtained from [13],

nC
i =

Z1
i

ZC
S=0

∞∑
k=−∞

∞∑
p=−∞

ap
3
ak
2a

−2k−3p−s
1

Ik(x2)Ip(x3)I−2k−3p−s(x1), (6)

where ZC
S=0 is the canonical partition function

ZC
S=0 = eS 0

∞∑
k=−∞

∞∑
p=−∞

ap
3
ak
2a

−2k−3p
1

Ik(x2)Ip(x3)I−2k−3p(x1), (7)

and Z1
i is the one-particle partition function (7) calculated for μS = 0 in the Boltzmann approximation.

The arguments of the Bessel functions Is(x) and the parameters ai are introduced as,

as =
√

S s/S −s , xs = 2V
√

S sS −s, (8)

where S s is the sum of all Z1
k (μS = 0) for particle species k carrying strangeness s.

In the limit where xn < 1 (for n = 1, 2 and 3) the density of strange particles carrying strangeness

s is well approximated by [13]

nC
i � ni

Is(x1)
I0(x1)

. (9)

From these equations it is clear that in the canonical ensemble the strange particle density depends ex-

plicitly on the volume through the arguments of the Bessel functions. This volume might be different

from the overall volume V and is denoted as Vc [15, 16].

To account for the suppression beyond that expected in the canonical ensemble, it was assumed

that exact strangeness conservation holds only in a small subvolume Vc of a system. The concept of a

strangeness correlation volume Vc has been used in earlier studies [16–19].

3 Origin of the maxima

In the thermal model, the baryon chemical potential decreases continuously with increasing beam

energy. At the same time the temperature increases rather quickly until it reaches a plateau. Following
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the rapid rise of the temperature at low beam energies, the Λ/π+ and K+/π+also increase rapidly.

This comes to a halt when the temperature reaches its limiting value. However, the baryon chemical

potential keeps on decreasing. Consequently, the Λ/π and K+/π+ratios follow this decrease due to

strangeness conservation as K+ is produced in associated production together with a Λ. The two

effects combined lead to maxima in both cases. For very high energies, the baryo-chemical potential

no longer plays a role (μB ≈ 0) and the temperature is constant hence these ratios hardly vary [4].

To show this in more detail we present as an example in figure 1 lines where the K+/π+and the

Λ/π+ ratios remain constant in the T − μB plane. It should be noted that the maxima of these ratios do

not occur in the same position, which remains to be confirmed experimentally. It is also worth noting

that the maxima are not on but slightly above the freeze-out curve. The shaded regions indicate the

values of these ratios in the T − μB plane.
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Figure 1. Values of the K+/π+(left-hand pane) and the Λ/π+ (right-hand pane) ratios in the T − μB plane. Lines

of constant values are indicated. The dashed-dotted line is the freeze-out curve obtained in [3] while the dashed

line uses the parameterization given in [21]. Note that the maxima do not occur in the same position.

Similarly, in figure 2 we show in lines where the Ξ−/[(π+ +π−)/2] and the Ω−/[(π+ +π−)/2] ratios
remain constant in the T − μB plane. Again, it should be noted that the maxima of these ratios never

occur in the same position. Again, it is also worth noting that the maxima are not on but slightly above

the freeze-out curve. The shaded regions indicate the values of these ratios in the T − μB plane.

The differences in the positions of the maxima are caused by the different masses of the hadrons

involved.

4 Particle ratios for small systems

To consider the case of the collisions of smaller nuclei we have to take into account the strangeness

suppression according to the canonical model, i.e. the concept of strangeness correlation in clusters

of a sub-volume Vc ≤ V [15, 16, 20].

In the following figures we show the trends of various particle ratios as a function of
√

sNN. The
dependence of T and μB on the beam energy is taken from heavy-ion collisions [3]. For p-p collisions

slightly different parameters are more suited [22] but were not used. Therefore, the shown calculations

give the general trend only. We have ignored the variations of parameters with system size.

We focus on the dependence of the thermal parameters with particular emphasis on the change

in the strangeness correlation radius RC . The parameters R = 10 fm (which is the value for central

Pb-Pb collisions) and γS = 1 are kept fixed. The freeze-out values of T and μB will vary with the

system size [20], however this has not been taken into account in the present work which aims to give

a qualitative description of the effect only.
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Figure 2. Values of the Ξ−/ 1
2
[π+ + π−] (left-hand pane) and the Ω−/ 1

2
[π+ + π−] (right-hand pane) ratios in the

T − μB plane. Lines of constant values are indicated. The dashed-dotted line is the freeze-out curve obtained

in [3] while the dashed line uses the parameterization given in [21]. Note that the maxima do not occur in the

same position.

The smaller system size is described by decreasing the value of the correlation radius RC . This

ensures that strangeness conservation is exact in RC , and that strangeness production is suppressed

with decreasing RC .

In figure 3 we show the energy and system size dependence of two particle ratios calculated along

the chemical freeze-out line. In figure 3 a maximum is seen in the K+/π+ ratio which gradually

disappears when the correlation radius decreases. A different effect is seen in Λ/π± ratio. Here,

the gradual decrease of the maximum is also seen but, contrarily to the K+/π+ ratio, it remains quite

prominent even for a small correlation radius. Also, the maximum shifts, for smaller systems, towards

higher
√

sNN. For pp collisions which correspond to a RC of about 1.5 fm [20], they will hardly be

observed. It should also be noted that in the thermal model the maxima happen at different beam

energies.

In figure 4 we plot the K−/π− ratio and Λ̄/π− ratios as a function of beam energy for various values

of the correlation radius. Due to the different signs of the chemical potentials entering this ratio, as

compared to the particle ratios in figure 3 no maximum is obtained for any value of the beam energy

or the correlation radius.

Again, we emphasize that the results presented here are of a qualitative nature. In particular

there could be changes due to variations with the system size of the temperature and the baryon

chemical potential. In addition the strangeness equilibration volume Vc could be energy and system

size dependent.

The curves in figures 3 and 4 were calculated using THERMUS [23].

The particle ratio K+/π+ of hadrons produced in relativistic nucleus-nucleus collisions has also

been studied in the context of the thermal model of hadrons with exact strangeness conservation

in [24].
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Figure 3. Values of the K+/π+(left-hand pane) and the Λ/π+ (right-hand pane) ratios as a function of invariant

beam energy for various strangeness correlation radii RC , calculated using the thermal model [23]. The correlation

radius is varied from 3.0 (top curve) to 2.5, 2.0, 1.5 and finally 1.0 fm (bottom curve). Note that the Λ/π+ ratio is

the ratio where the maximum stays most pronounced as the system size is reduced.
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Figure 4. Values of the K−/π−(left-hand pane) and the Λ̄/π− (right-hand pane) ratios as a function of invariant

beam energy for various strangeness correlation radii RC , calculated using the thermal model [23]. The correlation

radius is varied from 3.0 (top curve) to 2.5, 2.0, 1.5 and finally 1.0 fm (bottom curve).

5 Conclusions

The thermal model qualitatively describes the presence of maxima in the K+/π+and the Λ/π± ratios

at a beam energy of
√

sNN≈ 10 GeV. In this talk we have described what could possibly happen with

different strange particles and pion yields in collisions of smaller systems due to constraints imposed

by exact strangeness conservation. In particular, the Λ/π+ ratio still shows a clear maximum even

small systems. The pattern of these maxima is also quite special as they are not always at the same

beam energy.
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