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Abstract. Within the non-relativistic approach to photo-absorption sum rules for the

3N(4N)-nuclei the new σ−1 sum rules are proposed which are based on general charge-

symmetry (CS) consequences for the "CS-conjugated" triton and 3He and the CS-self-

conjugated 4He. Combining the relativistic constituent quark model of the nucleon and

the known spin-,isospin- and the dipole-moment fluctuation sum rules, the relevant mo-

ments of the quark coordinate distribution and correlation functions in the ground state

of the nucleon are derived and discussed.

1 Introduction
The observed effects of the structure-dependent asymmetries in the static electromagnetic characteris-

tics of hadrons, such as parameters of form-factors or coefficients of the electromagnetic polarizability,

or in characteristics of processes induced by lepton- or photon-hadron interactions, e.g., total or partial

cross sections, are known as very useful means to study and to understand the underlying dynamics.

The sum rules, in particular, have long served as a reliable constraints on, or relations between

measured quantities, depending only on most general principles and statements of the theory.

In this work we shall concentrate mainly on two topics: the sum rules for static electromag-

netic characteristics of hadrons and the role of the dynamical short-range correlations of nuclear con-

stituents in description of the behavior of the total and polarized photonuclear or photon-nucleon cross

section.

As it is known, the non-relativistic dipole sum rules continue to be a useful tool in the theory of

the atomic and nuclear photo-effect.

σn(E1) =
∫ ∞

thr
dω ωn σE1(ω).

Examples: n = −2 → Kramers-Heisenberg sum rule (SR) for static electric-dipole polarizability of a

given quantum system;

n = −1 → the bremsstrahlung-weighted SR, dependent of charged-"parton" correlation in a given

system;

n = 0 → the famous Thomas-Reiche-Kuhn SR, known as a precursor of the Quantum Mechanics. As

far as the nucleon is the relativistic 3q system, the relativistic generalization of sum rules is needed,

including the spin degrees of freedom and spin-dependent interactions and correlations of partons.
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2 The non-relativistic σ−1 sum rules for few-body nuclei

Besides sum rules including the measurable physical quantities and obtained on the base of the current

algebras and the pz → ∞ techniques, the similar sum rules ( but without the explicitly spin-dependent

terms) were obtained in the non-relativistic (NR) nuclear physics context. In particular, the NR sum

rules σ−1 for the s-shell nuclei (A = Z + N ≤ 4) were earlier obtained from the assumption that the

ground-state wave function is symmetric in the space coordinates of nucleons [1],[2] for each nucleus

of the isotopic doublet 3H and 3He and for 4He

4π2α
NZ

A − 1
(
1

3
) · 〈r2ch〉NR =

∫
dν
ν
σE1(ν). (1)

The present-day situation is that the accuracy of the theoretical results [3] is higher than the exper-

imental uncertainties in the important energy range up to the pion production threshold [4] suggesting

that new experimental data would be timely. The main objective of this section is a comparison of the

Charge Independence (CI) and Charge Symmetry (CS) initial assumptions taken for the derivation of

the σ−1 sum rules for the "mirror" 3He -3H and the "charge-self-conjugate" 4He nuclei. The validity

of the Foldy [1] and Khokhlov [2] sum rules assumes validity of the (nucleon) charge independence

(CI) symmetry. Our objective in this section is to apply stronger charge symmetry (CS) requirements

in derivation of the F-Kh-type sum rules. In accord with the CS-provisions for the mean values of the

nucleon radii correlations in the mirror pair 3H- and 3He nuclei and the "self-conjugate" 4He nucleus,

we have get that the values of < D2 >3He, < D2 >3H , and 〈r2ch〉3H can be expressed via one and the

same linear combination of the introduced and undetermined parameters which is different from the

analogues expression for 〈r2ch〉3He. Taken at face value this means that with our stricter assumption on

the underlying symmetry i.e. the CS instead of CI-option, we get only one "mixed" sum rule instead

of three (for 3H,3He and 4He) earlier mentioned Foldy-Khokhlov sum rules:

σ−1(3H)[2.45mb] =
4π2α

3
· 〈r2pp〉

3H
ch [2.42mb] = σ−1(3He)[2.54 ± .09mb]. (2)

The nuclei charge radii in the above relations and in what follows are understood as correspond-

ing to the case of "point-charge-protons" ones which reached by subtracting from "physical" values

standard corrections, e.g.[5].

The problem of the radii difference in the charge-symmetry-conjugated 3N-nuclei is of similar

degree of complexity as the long-discussed binding energy difference of the 3He and 3H: Eb(
3H) =

8.52MeV and Eb(
3He) = 7.76MeV , e.g. [6, 7]. For a qualitative understanding of the intended

estimation, we resort to dimensional arguments and factors as follows:

Eb(
3He)

Eb(3H)
[.911] �

〈r2ch〉−1/23He

〈r2ch〉−1/23H

[0.899]. (3)

The unexpected numerical closeness of two ratios written down on exclusively dimensional

ground signals nevertheless that for its full dynamical explanation one should include into considera-

tion not only the Coulomb interaction effects but all collection of the CS-breaking-effects as in [6, 7],

that represent on the nuclei and hadronic scales the fundamental current u- and d-quark mass differ-

ence.

The modified σ−1(4He) sum rule keeping the basic CS-symmetry limitations can be presented in

the form

σ−1(E1)
4He =

16

9
π2α(〈rc

2〉4He + βpp − βpn). (4)
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The notations for the βNN′ through the scalar products of the nucleon radial coordinates were intro-

duced in the paper [1]. For the CS-self-conjugate 4He2-nucleus all βpp = βnn � βpn can be computed

if the explicit form of the ground state radial wave function is available.

3 Relativistic σ−1 sum rule and its application for one-electron atom

In what follows we consider relativistic dipole moment fluctuation sum rules in the "valence-parton"

approximation, that is neglecting virtual particle-antiparticle configurations in the ground state of

the considered systems or diffractively produced in the final states of photo-absorption reactions.

The anomalous magnetic moment sum rules express a model-independent correspondence between

static properties of a particle (or bound system of particles) and integrals over the photo-absorption

spectrum. For particles with the spin S = 1/2 the sum rule for the anomalous magnetic moment κ (or
GDH-sum rule) reads [8–10]

2π2ακ2

m2
=

∫ ∞

thr

dν
ν
(σp(ν) − σa(ν)) (5)

where σp(a) refers to the cross-section with the parallel(anti-parallel) spins of the target and photon.

In QED,the validity of the sum rule for free electron was checked in two lowest orders of the

perturbation theory [11, 12]. Later on, for the physical reasons, we shall replace κ2 entering different

sum rules just by its integral expression in the GDH sum rule. In particular, for the relativistic dipole

moment fluctuation sum rule

4π2α[
1

3
< D2 > − κ

2

4m2
] =

∫ ∞

thr

dν
ν
σtot(ν), (6)

we obtain another form to be used later

4π2α[
1

3
< D2 >] =

∫ ∞

thr

dν
ν
(σp(ν). (7)

We apply first derived sum rule to the system of the highly ionized atom Pb81+, initiated about half-

century ago by J.S. Levinger and co-workers [13]. Using the form of the sum rule with our included

term κatom we reduced deviation between left- and right-hand sides of the sum rule, discovered in

earlier works, to one-half percent. Numerically:

4π2α
1

3
< D2 > [937.2b] − 4π2α(

κ

2M
)2[67.9b] =

∫ ∞

thr

dν
ν
σtot(ν)[874b], (8)

where for the anomalous magnetic moment of the atom we used the total magnetic moment of electron

bound in the lowest S-wave orbit [14].

4 Relativistic constituent quark model and nucleons

Following formally to the pz → ∞ techniques derivation of the Cabibbo-Radicati [15] or GDH sum

rule [16], we can obtain the relation

4π2α(
1

3
< 
D2 >) =

∫
dν
ν
σres

p (ν). (9)

 
 

DOI: 10.1051/, 0 (2017) 713801018138 epjconf/201EPJ Web of Conferences
Baldin ISHEPP XXIII

1018 

3



We use the definitions

D̂ =
∫

xρ̂(
x)d3x =

3∑
j=1

Qq( j)
d j, r̂21 =
∫

x2ρ̂(
x)d3x =

3∑
j=1

Qq( j)
d j
2
. (10)

The defined operators Qq( j) and 
d j are the electric charges and configuration and spin variables of

point-like interacting quarks in the infinite-momentum frame of the bound system.

Finally, we relate the electric dipole moment correlators consecutively for the proton, the neutron,

the pure "isovector-nucleon" and the iso-vector part of the mean-squared radii operators, which all

are sandwiched by the nucleon state vectors in the "infinite - momentum frame", with experimentally

measurable data on the resonance parts of the photo-absorption cross sections on the proton and

neutron presently known below ∼ 2 GeV [17]. The listed operator mean values are presented as

follows

RV =
1

2
(< r21 >P − < r21 >N) = α − 1

2
β. (11)

JP =
1

3
< D̂2 >P=

8

27
α +

1

27
β +

8

27
γ − 8

27
δ. (12)

JN =
1

3
< D̂2 >N=

2

27
α +

4

27
β +

2

27
γ − 8

27
δ. (13)

JV =
1

3
< D̂2 >V=

2

3
α +

1

3
β +

2

3
γ − 4

3
δ, (14)

where < 
d1

2
>=< 
d2

2
>= α,< 
d3

2
>= β, < 
d1 · 
d2 >= γ, < 
d1 · 
d3 >=< 
d2 · 
d3 >= δ

indices "1" and "2" refer to the like quarks (i.e. to the u(d)- quarks inside the proton (neutron)),

and "3" to the odd quark. Evaluation of the relativistic electric dipole moment fluctuation and the

isovector charge radius sum rules for the nucleon was carried out with the available compilation [17]

of the resonance pion-photoproduction data on the proton and neutron with the helicity λ = 1/2(3/2)
AP(N)
1/2

and AP(N)
3/2

and all integrals over photo-excited nucleon resonances were taken in the narrow

resonance approximation:

Jres
p(a) 	

4πmn|Ares
3/2(1/2)

|2
m2

res − m2
n
, (15)

where mn(res) is the nucleon (or resonance) mass. Solving the system of the linear equations and

evaluating the RV ,JP,N,V with the help of experimentally known partial amplitudes of main photo-

excited resonances, we find our final results for the numerical values α, β and the opening angle θ12
and θ13 between vectors 
d1 and 
d2 and vectors 
d1(2) and 
d3:

α1/2 = 0.75 ± 0.06 f , (16)

β1/2 = 0.77 ± 0.12 f , (17)

θ12 	 1200, (18)
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θ13 	 θ23 ∼ 1200, (19)

< r12 >V= 0.25 ± 0.02 f 2[exp : .29 f 2]. (20)

Having got the values of the "global" parameters α, β, etc. defined in the infinite momentum

frame, we put all three vectors with the pertinent numerical parameters into the plane transverse to

pz → ∞ momentum and define parameters of the closed contour circumscribing their ends. The re-

sulting curve is either ellipse with very small eccentricity or the circle. This fact is, in our opinion, at

variance with rather popular "quark-diquark" models of the nucleon with, presumably, more notice-

able asymmetry of the spatial correlations of the uu- and ud - quark pairs. It should be stressed that

the accepted parametrization of the integrals RV ÷ JV is corresponding to the CS-breaking option, that

is, the cited pairwise closeness of the α and β, or γ and δ may be due to the approximate nature of our

numerical estimates. Their actual difference may be connected, e.g., with the mass and coupling con-

stant difference of the charged and neutral pion within the valence quarks of nucleons, that is with the

mass-difference of the u- and d-quarks, as the fundamental reason of the charge-symmetry breaking.

5 Concluding remarks

1. The generalization of the non-relativistic Foldy-Khokhlov sum rules is proposed for the "CS-

mirror" 3He -3H and the "CS-self-conjugate" 4He nuclei. The introduced corrections replace

the charge-independence, (CI)- approximations used earlier.

2. The relativistic current-algebra and dispersion relation based sum rule establishing new rela-

tion between characteristics of the electron bound in the hydrogen-like, highly-charged ions is

checked numerically.

3. With the accuracy about 15%, the isovector charge radius of the nucleon was calculated via the

Cabibbo-Radicati sum rule through the integral of total resonance photo-production of hadrons

on the nucleons. The mentioned deficit should be referred to the "pion-sea" presence in the

nucleon state vector.

4. Approximately derived values of the parameters defining quark correlations in the nucleon turn

out qualitatively close to each other contrary to expectations based on the implementation of

the CS-vs-CI-symmetry, as it is seen in pairwise comparison of α-vs-β or γ-vs-δ. Thus, these
data don’t seemingly be consistent with the asymmetric quark-diquark model of the nucleon.
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