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Abstract. We present recently obtained results for dynamical chiral symmetry breaking

studied within (2 + 1)-dimensional QED with N four-component fermions. The leading

and next-to-leading orders of the 1/N expansion are computed exactly in an arbitrary

non-local gauge.

1 Introduction

In these Proceedings we present the results of our recent papers [1, 2], where the critical behavior of

Quantum Electrodynamics in 2 + 1 dimensions (QED3) has been studied. QED3 is described by the

Lagrangian:

L = Ψ(i∂̂ − eÂ)Ψ − 1

4
F2
μν , (1)

where Ψ is taken to be a four component complex spinor. In the presence of N fermion flavours, the

model has a U(2N) symmetry. A (parity-invariant) fermion mass term, mΨΨ, breaks this symmetry

to U(N)×U(N). In the massless case, loop expansions are plagued by infrared divergences. The latter

soften upon analyzing the model in a 1/N expansion [3]. Since the theory is super-renormalizable, the

mass scale is then given by the dimensionless coupling constant: a = Ne2/8, which is kept fixed as

N → ∞. Early studies of this model [4, 5] suggested that the physics is rapidly damped at momentum

scales p � a and that a fermion mass term breaking the flavour symmetry is dynamically generated at

scales which are orders of magnitude smaller than the intrinsic scale a. Since then, dynamical chiral

symmetry breaking (DχSB) in QED3 and the dependence of the dynamical fermion mass on N have

been the subject of extensive studies, see, e.g., [1, 2, 4–13].

One of the central issue is related to the value of the critical fermion number, Nc, which is such

that DχSB takes place only for N < Nc. An accurate determination of Nc is of crucial importance to

understand the phase structure of QED3 with far reaching implications from particle physics to planar

condensed matter physics systems having relativistic-like low-energy excitations [14]. It turns out that

the values that can be found in the literature vary from Nc → ∞ [4, 6] corresponding to DχSB for all

values of N, all the way to Nc → 0 in the case where no sign of DχSB is found [7].
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Figure 1. LO diagram to the dynamically generated mass Σ(p). The crossed line denotes mass insertion.

Of importance to us in the following, is the approach of Appelquist et al. [5] who found that

Nc = 32/π2 ≈ 3.24 by solving the Schwinger-Dyson (SD) gap equation using a leading order (LO)

1/N-expansion. Lattice simulations in agreement with a finite non-zero value of Nc can be found

in [8]. Soon after the analysis of [5], Nash approximately included next-to-leading order (NLO)

corrections and performed a partial resummation of the wave-function renormalization constant at the

level of the gap equation; he found [9]: Nc ≈ 3.28.

Recently, in [1], the NLO corrections could be computed exactly in the Landau gauge upon re-

fining the analysis of [10]. This led to Nc ≈ 3.29, a value which is surprisingly close to the one of

Nash in [9]. More recently, in [2], the results of [1] were generalized to an arbitrary non-local gauge

[15]. Moreover, it was shown in [2] that a resummation of the wave-function renormalization yields

a strong suppression of the gauge dependence of the critical fermion flavour number, Nc(ξ) where ξ
is the gauge fixing parameter, which is such that DχSB takes place for N < Nc(ξ). Neglecting the

gauge-dependent terms yields Nc = 2.8469, that coincides with results in [11]. In the general case,

it is found that: Nc(1) = 3.0084 in the Feynman gauge, Nc(0) = 3.0844 in the Landau gauge and

Nc(2/3) = 3.0377 in the ξ = 2/3 gauge where the leading order fermion wave function is finite. These

results suggest that DχSB should take place for integer values N ≤ 3. Using a very different method,

Herbut obtained [12] a close value: Nc ≈ 2.89.

It is the purpose of this work to review some of the basic steps of papers [1, 2] which represent an

essential improvement with respect to Nash’s approximate NLO results derived some 30 years ago.

2 Schwinger-Dyson equations

With the conventions of [1], the inverse fermion propagator is defined as: S −1(p) = [1 +

A(p)] (ip̂ + Σ(p)) where A(p) is the fermion wave function and Σ(p) is the dynamically generated

parity-conserving mass which is taken to be the same for all the fermions. The SD equation for the

fermion propagator may be decomposed into scalar and vector components as follows:

Σ̃(p) =
2a
N

Tr

∫
d3k

(2π)3

γμDμν(p − k)Σ(k)Γν(p, k)

[1 + A(k)]
(
k2 + Σ2(k)

) , A(p)p2 = −2a
N

Tr

∫
d3k

(2π)3

Dμν(p − k)p̂γμk̂Γν(p, k)

[1 + A(k)]
(
k2 + Σ2(k)

) ,
(2)

where Σ̃(p) = Σ(p)[1 + A(p)], Dμν(p) is the photon propagator in the non-local ξ-gauge:

Dμν(p) =
Pξμν(p)

p2
[
1 + Π(p)

] , Pξμν(p) = gμν − (1 − ξ) pμpν
p2
, (3)

Π(p) is the polarization operator and Γν(p, k) is the vertex function. In the following, (2) will be

studied for an arbitrary value of the gauge-fixing parameter ξ. All calculations will be performed with

the help of the standard rules of perturbation theory for massless Feynman diagrams as in [16], see

also the recent short review [17]. For the most complicated diagrams, the Gegenbauer polynomial

technique will be used following [18].
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3 Gap equation at leading order

The LO approximations in the 1/N expansion are given by: A(p) = 0, Π(p) = a/|p| and Γν(p, k) = γν,
where the fermion mass has been neglected in the calculation of Π(p). A single diagram contributes

to the gap equation (2) at LO, see figure 1, and the latter reads:

Σ(p) =
8(2 + ξ)a

N

∫
d3k

(2π)3

Σ(k)(
k2 + Σ2(k)

) [
(p − k)2 + a |p − k|] . (4)

Following [5], we consider the limit of large a and linearize (4) which yields:

Σ(p) =
8(2 + ξ)

N

∫
d3k

(2π)3

Σ(k)

k2 |p − k| . (5)

The mass function may then be parameterized as [5]: Σ(k) = B (k2)−α, where B is arbitrary and the

index α has to be self-consistently determined. Using this Ansatz, (5) leads to the LO gap equation:

(β−1 = α(1/2 − α) and L ≡ π2N)

1 =
(2 + ξ)β

L
and α± =

1

4

⎛⎜⎜⎜⎜⎜⎝1 ±
√

1 − 16(2 + ξ)

L

⎞⎟⎟⎟⎟⎟⎠ , (6)

which reproduces the solution given by Appelquist et al. [5]. The gauge-dependent critical number of

fermions: Nc ≡ Nc(ξ) = 16(2 + ξ)/π2, is such that Σ(p) = 0 for N > Nc and Σ(0) � exp
[−2π/(Nc/N −

1)1/2], for N < Nc. Thus, DχSB occurs when α becomes complex, that is for N < Nc.

The gauge-dependent fermion wave function may be computed in a similar way. At LO, (2)

simplifies as:

A(p)p2 = −2a
N

Tr

∫
dDk

(2π)D

Pξμν(p − k)p̂γμk̂γν

k2|p − k| , (7)

where the integral has been dimensionally regularized with D = 3−2ε. Taking the trace and computing

the integral on the r.h.s. yields:

A(p) =
μ2ε

p2ε
C1(ξ) + O(ε) , C1(ξ) = +

2

3π2N

(
(2 − 3ξ)

[
1

ε
− 2 ln 2

]
+

14

3
− 6ξ

)
, (8)

where the MS parameter μ has the standard form μ2
= 4πe−γEμ2 with the Euler constant γE . We note

that in the ξ = 2/3-gauge, the value of A(p) is finite and C1(ξ = 2/3) = +4/(9π2N). From (8), the LO

wave-function renormalization constant may be extracted: λA = μ(d/dμ)A(p) = 4(2 − 3ξ)/(3π2N) a

result which coincides with the one of [19].

4 Next-to-leading order

We now consider the NLO contributions and parametrize them as:

Σ(NLO)(p) =

(
8

N

)2

B
(p2)−α

(4π)3
(ΣA + Σ1 + 2Σ2 + Σ3) , (9)

where each contribution to the linearized gap equation is represented graphically in figure 2. The gap

equation has the following general form:

1 =
(2 + ξ)β

L
+
ΣA(ξ) + Σ1(ξ) + 2Σ2(ξ) + Σ3(ξ)

L2
, Σi = πΣi, (i = 1, 2, 3.A) (10)
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Figure 2. NLO diagrams to the dynamically generated mass Σ(p). The shaded blob defines the two-loop polar-

ization operator, see [1, 2] for details.

Performing the calculation of the diagrams shown in figure 2 (see [1, 2]), the gap equation (10)

may be written in an explicit form as:

1 =
(2 + ξ)β

L
+

1

L2

[
8S (α, ξ) − 2(2 + ξ)Π̂β +

(
−5

3
+

26

3
ξ − 3ξ2

)
β2 − 8β

(
2

3
(1 − ξ) − ξ2

)]
, (11)

where Π̂ = 92/9 − π2 arises from the two-loop polarization operator in dimension D = 3 [20, 21] and

S (α, ξ) contains the contributions of complicated diagrams. Considering (11) directly at the critical

point α = 1/4, i.e., at β = 16, we have

L2
c − 16(2 + ξ)Lc − 8

[
S (ξ) − 4(2 + ξ)Π̂ − 16

(
4 − 50ξ/3 + 5ξ2

)]
= 0 , (12)

where S (ξ) = S (α = 1/4, ξ) and

8S (ξ) = 8(1−ξ)R1+ (ξ2−1)R2− (7+16ξ−3ξ2)
P2

16
, R1 = 163.7428, R2 = 209.175, P2 = 1260.720

(13)

Solving (12), we have two standard solutions:

Lc,± = 8(2 + ξ) ± √
d1(ξ) , d1(ξ) = 8

[
S (ξ) − 8

(
4 − 112

3
ξ + 9ξ2 +

2 + ξ

2
Π̂

)]
. (14)

Combining these values with the one of Π̂, yields: Nc(ξ = 0) = 3.29, Nc(ξ = 2/3) = 3.09, where “−”

solutions are unphysical and there is no solution in the Feynman gauge. The range of ξ-values for

which there is a solution corresponds to ξ− ≤ ξ ≤ ξ+, where ξ+ = 0.88 and ξ− = −2.36.

5 Resummation

Following [9], we would like to resum the LO term together with part of the NLO corrections con-

taining terms ∼ β2. In order to do so, we will now rewrite the gap equation (11) in a form which is

suitable for resummation. This amounts to extract the terms ∼ β and ∼ β2 from the complicated part

of the fermion self-energy, S (α, ξ), yielding:

S (α, ξ) =
1

4

(
1 − ξ)β(3β − 8) − 1

2
ξ(4 + ξ)β + S̃ (α, ξ) . (15)

At the critical point α = 1/4 (β = 16), S̃ (ξ) = S̃ (α = 1/4, ξ) has the following form:

8S̃ (ξ) = 8(1−ξ)R̃1+(ξ2−1)R̃2−(7+16ξ−3ξ2)
P̃2

16
, R̃1 = 3.7428, R̃2 = 1.175, P̃2 = −19.28 . (16)
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With the help of the results (16), the gap equation (11) may be written as:

1 =
(2 + ξ)β

L
+

1

L2

[
8S̃ (α, ξ) − 2(2 + ξ)Π̂β +

(
2

3
− ξ

) (
2 + ξ

)
β2 + 4β

(
ξ2 − 4

3
ξ − 16

3

)]
. (17)

At this point (11) and (17) are strictly equivalent to each other and yield the same values for Nc(ξ).
Equation (17) is the convenient starting point to perform a resummation of the wave function renor-

malization constant. To do it (see details in [2]) (17) can now be expressed as:

1 =
8β

3L
+

1

L2

[
8S̃ (α, ξ) − 16

3
β

(
40

9
+ Π̂

)]
, (18)

which displays a strong suppression of the gauge dependence even at NLO as ξ-dependent terms do

exist but they enter the gap equation only through the rest, S̃ , which is very small numerically.

We now consider (18) at the critical point, α = 1/4 (β = 16), which yields:

L2
c −

128

3
Lc −

[
8S̃ (ξ) − 256

3

(
40

9
+ Π̂

)]
= 0 . (19)

Solving (19), we have two standard solutions:

Lc,± =
64

3
± √

d2(ξ) , d2(ξ) =

(
64

3

)2

+
[
8S̃ (ξ) − 256

3

(
40

9
+ Π̂

)]
. (20)

In order to provide a numerical estimate for Nc, we have used the values of R̃1, R̃2 and P̃2 of (16).

Combining these values together with the value of Π̂, yields, for Nc(ξ) (“−” solutions being unphysi-

cal):

Nc(0) = 3.08, Nc(2/3) = 3.04, Nc(1) = 3.01 . (21)

Actually, solutions exist for a broad range of values of ξ: ξ̃− ≤ ξ ≤ ξ̃+, where ξ̃+ = 4.042 and

ξ̃− = −8.412; this is consistent with the weak ξ-dependence of the gap equation. Moreover, following

[22], we think that the “right(est)” gauge choice is one close to ξ = 2/3 where the LO fermion wave

function is finite. Indeed, upon resumming the theory, the value of Nc(ξ) increases (decreases) for

small (large) values of ξ. For ξ = 2/3, the value of Nc is very stable, decreasing only by 1-2%

during resummation. Finally, if we neglect the rest, i.e., S̃ (ξ) = 0 in (19), the gap equation becomes

ξ-independent and we have: Lc = 28.0981 and therefore: Nc = 2.85, a value that coincides with the

one in [11].

6 Conclusion

We have presented the studies [1, 2] of DχSB in QED3 by including 1/N2 corrections to the SD equa-

tion exactly and taking into account the full ξ-dependence of the gap equation. Following Nash, the

wave function renormalization constant has been resummed at the level of the gap equation leading to

a very weak gauge-variance of the critical fermion number Nc. The value obtained for the latter, (21),

suggests that DχSB takes place for integer values N ≤ 3 in QED3.

Notice that the large-N limit of the photon propagator in QED3 has precisely the same momentum

dependence as the one in the so-called reduced QED, see [22]. One difference is that the gauge fixing

parameter in reduced QED is twice less than the one in QED3. Such a difference can be taken into

account with the help of our present results for QED3 together with the multi-loop results obtained in

[20, 23]. The case of reduced QED, and its relation with dynamical gap generation in graphene which

is the subject of active ongoing research, see, e.g., the reviews [24], was considered in our paper [25].
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