3π and 4π meson production in np interactions at intermediate energies

A.P. Jerusalimov1*, A.V. Belyaev1, V.P. Ladygin1, V.N. Pechenov2, and Yu.A. Troyan1

1Joint Institute for Nuclear Research, 141980 Dubna, Russia
2GSI Helmholtzzentrum fur Schwerionenforschung GmbH, 64291 Darmstadt, Germany

Abstract. The study of 3π and 4π meson production in np interactions was carried out at the momenta of incident neutrons $P_0=3.83, 4.42$ and 5.20 GeV/c. The characteristics of the reactions were satisfactorily described by OPER model. For the better description of the reaction $np \rightarrow pp\pi^+\pi^-\pi^0$ it was necessary to take into account the production of η^0 and ω^0 mesons.

1 Introduction

The study of multipion production in NN collisions is one way to obtain information about the NN, πN and $\pi\pi$ states, including:

dibaryons (including $I=2$ in $pp\pi^+$),
dipions (narrow σ^0 meson, $\pi\pi$ state with $I=2$),
pentaquarks ($I=5/2, S=+1$),
missing resonances, etc.

Also the important task is the test of various models of pion production in NN interaction, such as, for example, Valencia model [1], Xu Cao model [2] and OPER model [3, 4].

2 Experiment

The neutron-proton interactions were studied using neutron beam and liquid hydrogen bubble (target) at the JINR Synchrophasotron [5]. The unique in fullness and precision data were obtained. It allowed to carry out the detailed study of inelastic np interactions in in a wide range of energies using the quasimonochromatic neutrons with $P_0<2.5\%$ under condition of 4π geometry.

The following reactions with 3 and 4 π mesons in the final states were studied:

\begin{align*}
np &\rightarrow pp\pi^+\pi^-\pi^-, \\
np &\rightarrow pp\pi^+\pi^-\pi^0, \\
np &\rightarrow np\pi^+\pi^-\pi^-
\end{align*}

at the momenta of $P_0=3.83, 4.42$ and 5.20 GeV/c (see figure 1).

The accuracy of the momentum and scattering angle reconstruction for the secondary charged particles was $\sigma_p/p \sim 2\%$ and $\sigma_\theta \sim 10$ mrad, respectively. The separation of the reaction channels

*e-mail: jerus@jinr.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
were carried out by the standard χ^2 procedure using corresponding constraint equations [6]. Finally, the numbers of events that were selected for the further study:

- $np \rightarrow pp\pi^+\pi^−\pi^−$: 390 events, $P_0=3.83$ GeV/c
- $np \rightarrow pp\pi^+\pi^−\pi^0$: 66 events, $P_0=4.42$ GeV/c
- $np \rightarrow np\pi^+\pi^−\pi^−$: 83 events, $P_0=5.20$ GeV/c

The cross sections of the considered reactions were presented in [7].

3 Data analysis

This reaction is characterized by:
- plentiful production of the Δ resonance, both from direct production and from Δ^* and N^* decays through the mode $\Delta\pi$,
- large peripherality of the secondary nucleons.

The model of reggeized π meson exchange suggested in ITEP [3] was taken to describe the experimental distributions of the considered reactions. The advantages of this model are:
- small number of free parameters (3 in our case),
- wide range of the described energies (2–200 GeV),
- calculated values are automatically normalized to the reaction cross section.

The following diagrams were taken into account to calculate the characteristics of the reactions $np \rightarrow NN3\pi$ and $np \rightarrow NN4\pi$:

![Diagrams of OPER model for the reactions of 3π and 4π meson production in np interactions.](image-url)
3.1 Reaction $np \to p\pi^+\pi^−\pi^−$

The results of the calculations using OPER model for the reaction $np \to p\pi^+\pi^−\pi^−$ are shown in figure 3 for the data at $P_0 = 5.20\text{ GeV/c}$ and in figure 4 for the data at $P_0 = 4.42\text{ GeV/c}$ and $P_0 = 3.83\text{ GeV/c}$. One can see a good agreement between the experimental data and theoretical calculations.

![Figure 3](image-url)

Figure 3. The distributions for the reaction $np \to p\pi^+\pi^−\pi^−$ at $P_0=5.20\text{ GeV/c}$. Solid line - calculations using OPER model.

3.2 Reaction $np \to p\pi^+\pi^−\pi^−π^0$

The results of the calculations using OPER model for the reaction $np \to p\pi^+\pi^−\pi^−π^0$ are shown in figure 5 for the data at $P_0 = 5.20\text{ GeV/c}$.

One can see a good agreement between the experimental data and theoretical calculations except the region of η^0 and $ω^0$ mesons at the masses of $π^+π^−π^0$ combinations. As far as it concerned the description of η^0 and $ω^0$ mesons it is necessary to take into account the diagrams of the type that are shown in figure 6.

The diagrams 6a and 6b describe η^0-meson production through the production of $N^*_1(1535)$ resonance in $πN$ interaction with the consequent decay $N^*_1(1535) \to N\eta^0$. The "hanged" diagrams 6c and 6d describe $η^0$ meson production due to $a-π$ or $σ-η$ interaction.

The results at $P_0=4.42\text{ GeV/c}$ and $P_0=3.83\text{ GeV/c}$ are not presented due to a small statistics. But OPER model also described satisfactorily the experimental distribution and the signal of $η^0$ and $ω^0$ mesons production was also observed at these energies.

3.3 Reaction $np \to nπ^+π^+π^−π^−$

The results of the calculations using OPER model for the reaction $np \to nπ^+π^+π^−π^−$ are shown in figure 7 for the data at $P_0 = 5.20\text{ GeV/c}$ and in figure 8 for the data at $P_0 = 4.42\text{ GeV/c}$ and $P_0 = 3.83\text{ GeV/c}$.

One can see a good agreement between the experimental data and theoretical calculations.
Figure 4. The distributions for the reaction $np \rightarrow p\pi^+\pi^-\pi^-$ at $P_0=4.42$ GeV/c and $P_0=3.83$ GeV/c. Solid line - calculations using OPER model.

Figure 5. The distributions for the reaction $np \rightarrow p\pi^+\pi^-\pi^0$ at $P_0=5.20$ GeV/c. Solid line - calculations using OPER model.

4 Conclusion

Multi π mesons production in np interaction is provided by the excitation and $N\pi$ and $N\pi\pi$ decays of Δ^* and N^* resonances (taken from PWA and GIM).

The large peripherality of the secondary hadrons leads to the idea to use some exchange models (π, P etc. exchange).

It was shown that there are no noticeable signal of ρ meson production in the considered reactions.
OPER model allows to obtain a good description of the characteristics of 3 and 4 pions production in np interactions. To get a better description of the reaction \(np \rightarrow pp\pi^+\pi^-\pi^0 \) it is necessary take into account \(\eta^0 \) and \(\omega^0 \) production.

References

[2] Xu Cao, Bing-Song Zou and Hu-Shan Xu, PR C 81, 065201 (2010)
Figure 8. The distributions for the reaction $np \rightarrow n p\pi^+\pi^+\pi^-\pi^-$ at $P_0=4.42$ GeV/c and $P_0=3.83$ GeV/c. Solid line - calculations using OPER model.