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Abstract. This paper describes a numerical set-up which uses Discrete Element Method to produce standing

jumps in flows of dry granular materials down a slope in two dimensions. The grain-scale force interactions

are modeled by a visco-elastic normal force and an elastic tangential force with a Coulomb threshold. We will

show how it is possible to reproduce all the shapes of the jumps observed in a previous laboratory study: diffuse

versus steep jumps and compressible versus incompressible jumps. Moreover, we will discuss the additional

measurements that can be done thanks to discrete element modelling.

1 Introduction

A standing jump is a rapid change in height and veloc-

ity in a free-surface flow, demarcating supercritical from

subcritical flows. The phenomenon is well-known for hy-

draulic jumps on a smooth horizontal bottom, where the

jumps obey Bélanger equation: h∗/h = (
√
1 + 8Fr2−1)/2,

where h and h∗ hold respectively for the height before and

after the jump, and Fr = u/
√
gh is the Froude number

of the flow before the jump, with u the depth-averaged

velocity and g the acceleration of gravity. However, this

equation is not suitable for a granular flow which can oc-

cur only down an incline because of the frictional nature

of granular materials, and which may be compressible [1].

A recent study [2] confirmed the deviation from Bélanger

equation for grains, and even for unfrictional incompress-

ible flows like water when the bottom is rough or inclined.

Some applications like the design of avalanche protection

dams need an accurate prediction of the geometry of the

jumps formed in a flow of dry granular materials whatever

the incoming regime [1]. As highlighted in [2], the jump

height ratio does not depend on Fr only but is rather a

function of a number of parameters:

h∗
h
= f

(
Fr,

L

h
,
ρ∗
ρ
, tan ζ − μe, β, β∗, k, k∗

)
, (1)

where L is the jump length, ζ the incline slope, ρ and ρ∗
hold for the density before and after the jump, respectively,

and μe is the effective friction (see [2]). The coefficients β,

β∗, k and k∗ will be defined in Sec.2.3. In particular, Eq.1

suggests that h∗/h can be predicted for any incoming flow

and boundary conditions provided L/h is known.
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Figure 1: Sketch of a granular jump and notations

Our study aims to reproduce numerically a standing

jump formed in a flow of granular materials thanks to the

Discrete Element Method (DEM), in order to measure pre-

cisely the macroscopic parameters needed for Eq.1, and to

decipher the internal structure of the jump. In granular

media, the jump is defined as the part of the flow between

the incoming flow, where the free-surface is parallel to the

incline, and the outgoing flow, where the slope of the free-

surface is constant and equal to the critical slope ζ0 below

which no flow can occur, as proposed in [1]. For the largest

ζ, the flow is slightly accelerating (non-uniform, but still

at steady state). In those cases, the slope angle of the free-

surface is however very small compared to the changes in

the jump, and is not considered here (like in [1]). The main

variables defining a jump are summarized in Fig.1. The

depth-averaged velocity after the jump is noted ū∗, and the

mean diameter of the grains is d.

Section 2 describes the DEM contact-laws, the numer-

ical set-up used to create a jump, and the techniques to
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measure all the variables of interest. Section 3 shows that

this method allows to create a wide variety of jumps, and

presents some of the first results. Finally, a short conclu-

sion is given on the main challenging issues this granular

jump numerical set-up will allow to investigate.

2 DEM simulations of standing jumps

This section describes how granular flows are simulated

thanks to DEM, using YADE open-source software [3].

2.1 Microscopic contact laws

In order to model the grains interacting each other, we

chose the classical following viscoelastic law:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fn = knδnn + cnδ̇nn

ΔFs = ksδ̇sdt s

Fs ≤ μFn

(2)

In this equation, Fn and Fs are the normal and tangential

forces. Fn is the sum of a linear spring (of stiffness kn,

and proportional to the normal overlap δn) and a dashpot

of damping coefficient cn that depends on the restitution

coefficient e. Fs is incremented at each time step dt as

a linear spring (of stiffness ks proportional to the deriva-

tive of the tangential overlap δ̇s) restricted to a Coulomb

threshold force defined by the friction coefficients μ and μb

for grain-grain and grain-wall interactions, respectively. In

this study, the tests are carried out in two dimensions (2D),

with only one particle across the width. This is made by

blocking one degree of freedom in translation and two de-

grees of freedom in rotation for each particle. kn and ks are

calculated from the values of Young’s modulus E—which

was taken equal to 1 × 106 to respect the limit of rigid

grains condition, and Poisson coefficient ν taken equal to

0.3: kn = Ed/2 and ks = νkn, considering one diameter d

for all particles. A polydispersity of 15% around the cho-

sen diameter d = 4 cm is considered to avoid crystalliza-

tion effects. The bed-friction coefficient was μb = 0.25.

The grain density ρP = 2500 kg m3 to mimick the den-

sity of glass beads usually used in laboratory models. The

time-step was dt = 3 × 10−4s.

2.2 DEM set-up to produce the jumps

The numerical set-up is shown in Fig.2. A reservoir per-

manentely filled up with grains feeds an incline. At the

exit, a gate initially retains the grains. When there are

enough grains in the incline, the gate moves up. Every 150

time steps, the outflow discharge is calculated and com-

pared with the inflow. The gate then slightly moves, up or

down to adjust the discharge and guarantee a steady state.

This is a slight difference from the laboratory model where

the gate was adjusted by the operator and fixed [1]. The

strong advantage of DEM is that many control variables

can be changed to see their effect on the jump: the slope

angle ζ, the height H of the reservoir exit (that controls the

inflow), but also the grain diameter, the interparticle fric-

tion and the restitution coefficient. All parameters have a

default value, and each parameter was varied—the other

ones being fixed at the default value (see Tab.1).

Figure 2: DEM numerical set-up to produce standing gran-

ular jumps. (ζ = 30◦,H = 0.5, d = 2cm, μ = 0.5, e = 0.5)

Table 1: Default values (first line) and ranges (second line)

of the varying parameters for the 53 preliminary tests.

ζ [◦] H [m] d [cm] μ [−] e [−]
20 0.35 4 0.5 0.5

[15 − 40] [0.35 − 1.1] [1 − 6] [0.05 − 1] [0.2 − 1]

2.3 Measurement techniques

2.3.1 Geometry of the jump

When a simulation runs, the first step is to reach a steady

state. Then, the free-surface is calculated by discretising

the incline, and identifying the highest grain in each cell.

This is made a hundred times at several time steps to obtain

a smooth time-averaged free-surface at continuum scale.

The latter allows to identify the beginning of the jump,

which is the location where the free-surface is not par-

allel to the bottom anymore—when the derivative of the

function describing it becomes non-zero (Fig.2). We also

identify the end of the jump, where the slope of the free-

surface becomes constant—meaning that the derivative is

constant. Once a steady state is reached and both the be-

ginning and the end of the jump are well identified, a new

simulation is done to record the variables of interest.

2.3.2 Velocity profiles

An example of velocity profiles recorded before and after

the jump is shown in Fig.3. The raw DEM data sets exhibit

a noticeable scattering caused by the (discrete) fluctuating

nature of the flowing grains, but the mean velocities are

well-described at continuum scale and they can be fitted

by a Bagnold profile with basal slip, as already suggested

in [1, 4], which is given by the following equation:

u(z) = ub + A
√
gh

⎡⎢⎢⎢⎢⎢⎣
(

h − z0

d

)3/2
−

(
h − z

d

)3/2⎤⎥⎥⎥⎥⎥⎦ (3)

where ub denotes the sliding velocity of the basal layer,

which is taken at z = z0 = 1.5d (following [1, 4]) and A
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Figure 3: Velocity profiles across flow-depth before and

after the jump for one test: ζ = 20◦, H = 0.5m, d = 4cm,

μ = 0.5, e = 0.5. Blue diamonds are velocities averaged

over height increments; green lines are fits with Eq.3

Figure 4: (a) Boussinesq coefficients β or β∗ versus the

Froude number Fr or Fr∗. (b) Earth pressure coefficients

calculated from Eq.4 versus the grain-grain friction μ.

is the Bagnold pre-factor, which was let free in the fits

of Fig.3. The hypothesis of the Bagnold profile seems

very appropriate for the velocity of the incoming flow. But

Fig.3 shows that it is less satisfying for the outgoing flow,

because of a change in concavity next to the free-surface

that will need further investigation in the future.

Measuring accurately the velocities thanks to DEM

makes it possible to calculate precisely the Boussinesq co-

efficient, β before the jump (or β∗ after the jump), which

is defined by the relation β = ū2/ū2. The variations of β

and β∗ with Fr and Fr∗ respectively are given in Fig.4(a).

It clearly shows that the usual assumption that β = 1 is

very accurate for median values of the Froude number that

we find most of the time in the incoming flows, while it

may become an underestimate for very low values of the

Froude number as found in the downstream flow.

2.3.3 Earth pressure coefficients k,k∗

The earth pressure coefficients, noted k and k∗ before

and after the jump respectively, relate the normal stresses

through the relation σxx = kσzz. In this study, k and k∗
were not directly measured but derived from soil mechan-
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Figure 5: h∗/h versus Fr obtained with the present numer-

ical experiments (red circles) compared to the laboratory

experiments conducted by [1] (green stars).

ics concepts, as proposed by Savage and Hutter [5]:

kpass/act =

2
(
1 ±

√
1 − (1 + tan2 ϕs) cos2 ϕe

)
cos2 ϕe

− 1, (4)

where ϕs = tan−1(μb) is the bed friction angle and ϕe =

tan−1(μ) the internal friction angle. When μ becomes

lower than μb, we can consider k = k∗ = 1. The variations

of k and k∗ with μ according to Eq.4 are plotted in Fig.4(b).

Because the inter-particle friction coefficient used in DEM

is known to be different from the macroscopic (internal)

friction coefficient ([6]), our assumption for Equation 4

remains questionable. Future work will consider shear-

dependent friction coefficients, such as developed by [7].

3 A rich variety of granular jumps

The method presented in Sec.2.2 allows to create a wide

range of jumps, and confirms the results obtained in the

laboratory [1] as shown in Fig.5. We could observe steep

or diffuse jumps, compressible or incompressible jumps,

and identify the presence or absence of a recirculation

zone. Figure 6 displays pictures of jumps—with the inter-

nal streamlines drawn, obtained for different ζ and H/d.

3.1 Jump steepness

The two characteristic length-scales of a jump are its

height ratio h∗/h and its relative length L/h (if not ne-

glected like in Bélanger equation). Combining the two

leads to the steepness coefficient S = (h∗ − h)/L with re-

spect to the slope of the bottom. S can grow by increas-

ing ζ, and weakly depends on H/d (Fig.7). It is also cor-

related with the presence of recirculation as a very steep

jump will be instable, thus promoting the recirculation. A

larger opening of the reservoir leads to a higher discharge

and a denser jump, more stable. As such, the recircula-

tion appears for higher ζ and S. It is worthwhile to note

that jumps with recirculation were also observed for very

low μ, typically smaller than μb. This result–likely to un-

ravel the key role played by friction in the birth of jump

recirculation, will need further investigation in the future.
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Figure 6: (H/d, ζ) phase diagram for granular jumps. In each picture of the jumps, the streamlines are drawn, thus

allowing us to identify the presence or absence of a recirculation zone
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Figure 7: Steepness S versus the slope ζ for two values

of H/d (d = 4 cm). Empty—full—circles represent the

jumps without—with—a recirculation zone.

3.2 Jump compressibility

The granular jump compressibility is defined as the ratio

φ∗/φ (where ρ = ρPφ) between the volume fractions be-

fore and after the jump. φ∗ was systematically found to

be close to 0.81 (whatever the incoming flow and bound-

ary conditions), which is nearly equal to the 2D granular

random close packing. Then, once the incoming flow is

dilute (φ < φ∗), a compressible jump is obtained. Our sim-

ulations showed that it is possible to tend toward an incom-

pressible jump (φ∗/φ �→ 1) by different ways: increasing

H/d, decreasing ζ, decreasing d or decreasing μ.

4 Conclusion

The current paper presented preliminary DEM simulations

of standing jumps formed in flows of granular materials

down an incline. The first results are consistent with the

recent findings in laboratory tests [1]. This novel numeri-

cal set-up now offers the possibility to study in detail how

the jump geometry and its internal structure are influenced

by a number of parameters, and will allow to investigate

the energy dissipation inside the jump, as proposed in [2].
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