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Abstract. Granular materials and particulate matter are ubiquitous in our daily life and they display interesting

bulk behaviors from static to dynamic, solid to fluid or gas like states, or even all these states together. To

understand how the micro structure and inter-particle forces influence the macroscopic bulk behavior is still

a great challenge today. This short paper presents stress controlled homogeneous simple shear results in a

3D cuboidal box using MercuryDPM software. An improved rheological model is proposed for macroscopic

friction, volume fraction and coordination number as a function of inertial number and pressure. In addition,

the results are compared with the locally averaged data from steady state shear bands in a split bottom ring shear

cell and very good agreement is observed in low to intermediate inertia regime at various confining pressure but

not for high inertia collisional granular flow.

1 Introduction

Granular media are envisaged as a collection of micro-

scopic particles which interact through dissipative contact

forces; their natural discontinuity poses many challenges

for both academia and industry in understanding their bulk

behavior [1]. A continuum description of the flow behav-

ior of granular media is highly desirable, for application

in both natural phenomena studies and industrial applica-

tions. Despite numerous efforts, the constitutive relations

describing the granular flow behavior is still a matter of

debate. Solid mechanics and kinetic theory have been suc-

cessful in predicting the solid and gas like behavior, re-

spectively [2, 3]. At one extreme particles interact via en-

during contacts, while in the gaseous regime, binary colli-

sions are the mode of momentum exchange. The recently

proposed inertial number framework has been successful

in describing the flow behavior in the dense flow liquid

like regime when the particles not only undergo collisions

but also frictional interactions with other particles [4, 5].

Though it very well predicts the flow behavior in case of

steady shear of rigid particles, it fails in cases of inhomo-

geneous shear and transient shear, where we need better

constitutive models to describe dense granular flow [6].

Also a non-local constitutive models have been proposed

and tested to improve the constitutive relations in inhomo-

geneous flow [7]. With the development of computational

power nowadays, one can obtain simulation data with suf-

ficient statistics that allow to derive constitutive relations

that describe the local rheology and flow behavior [8–12].
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A pressure density relation has been proposed in [13]

in additive forms; the present paper proposes an extended

local constitutive model in a multiplicative form and then

tests the validity of this model for both homogeneous and

inhomogeneous steady state soft granular flow.

2 Simulation Setups

2.1 Stress controlled simple shear box

We use MercuryDPM [14, 15], an open-source implemen-

tation of the Discrete Particle Method, to simulate a cuboid

shear volume with Lees-Edwards periodic boundaries in x
and y directions and normal periodic boundaries in z di-

rection. The particles are sheared along x direction with a

constant velocity Vx and the stress is kept constant along

y direction as σyy. We vary the shear rate γ̇ = ∂Vx/∂y
to understand the shear flow from quasi-static to dynamic

regimes. The purpose of using Lees-Edwards periodic

boundaries with constant stress is to represent dense gran-

ular flow in reality, e.g, sand or/and powders sheared in

different shear cells or in an avalanche [10]. The piece-

wise linear elasto-plastic frictional contact model is used

between particle contacts and the number of particles used

in the simulation is 4096. The other input parameters are

summarized in Table 1.

2.2 Split-Bottom ring shear cell

The same MercuryDPM software was used to simulate a

shear cell with annular geometry and a split bottom, as ex-

plained detailed in [16–18]. The geometry of the system

consists of an outer cylinder (radius Ro = 110 mm) rotating

around a fixed inner cylinder (radius Ri = 14.7 mm) with
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Table 1. Summary and numerical values of particle parameters

used in the DEM simulations.

Parameter Symbol Simple Shear Split-Bottom

Average Diameter < r > 2.2 and 2 mm 2.2 mm

Polydispersity w = rmax/rmin 2 and 3 2

Particle Density ρp 2000 kg/m3 2000 kg/m3

Normal stiffness k 108 kg/s2 100 kg/s2

Tangential stiffness kt/kn 0.286 0.286
Rolling/torsion stiffness kr/kn 0.286 0.286
Coulomb friction static μs 0.01 0.01
Coulomb friction dynamic μd 0.01 0.01
Rolling friction μr 0 0

Restitution coefficient e 0.804 0.469
Normal Viscosity γn 1 kg/s 0.002 kg/s

Friction Viscosity γt/γn 0.286 0.286
Rolling Viscosity γr/γn 0.286 0.286
Torsion Viscosity γr/γn 0.286 0.286

a rotation frequencies of Ω = 0.01 to 0.75 revolutions per

second. The granular material is confined by gravity be-

tween the two concentric cylinders, the bottom plate, and

a free top surface. The bottom plate is split at radius Rs

= 85 mm. Due to the split at the bottom, a narrow shear

band is formed. It moves inwards and widens towards the

free surface. This set-up thus features a wide shear band

away from the bottom and the walls, which is thus free

from boundary effects. The filling height (H ≈ 40 mm) is

chosen such that the shear band does not reach the inner

wall.

In earlier studies [11, 17], a quarter of this system (0◦
≤ φ ≤ 90◦) was simulated using periodic boundary con-

ditions. In order to save computation time, here we sim-

ulate only a smaller section of the system (0◦ ≤ φ ≤ 30◦)
with appropriate periodic boundary conditions in the angu-

lar coordinate, unless specified otherwise. No noticeable

effect on the macroscopic flow behavior was observed in

comparison between simulations done with a smaller (30◦)
and a larger (90◦) angle.

3 Dimensionless numbers

The effects of varying shear rate, γ̇, and confining pres-

sure, p, can be modeled using two dimensionless num-

bers, expressed as a ratio of time-scales, as given in Table

2, where ρp is particle density and k is the contact load-

ing stiffness. Note that the subscripts in time scale ratio,

γ̇, p and k denote shear rate, pressure and contact duration

respectively.

Table 2. Dimensionless numbers for the model

Dimensionless number Definition Time scale ratio

Inertial number I γ̇dp√
p/ρp

tp/tγ̇

Softness p∗ pdp

k (tk/tp)
2

4 Rheological model

Here, a short summary of recent results on formulating

an improved/accurate the local granular rheology is pre-

sented.

4.1 Classical μ(I)-rheology

When formulating a granular rheology, the starting point is

the successful, simple, and elegant so-called μ(I)-rheology
[5], which relates the so-called macroscopic (bulk) fric-

tion, i.e., the shear-stress to pressure ratio μ = τ/p, in a

sheared particulate system, to the inertial number, I:

μ(I) = μ0 + (μ∞ − μ0)
1

1 + I0/I
(1)

This relation describes well a wide variety of flows

[13] of hard, cohesionless particles, where μ0 = 0.15 and

μ∞ = 0.42 represent the zero and infinite strain-rate limits,

respectively, and the characteristic dimensionless strain-

rate where the inertial effect kicks in, is I0 = 0.06, .

4.2 μ(I)-rheology for soft particles

The first improvement is based on particle softness, p∗, as
introduced in [11, 18, 19]:

μ(I, p∗) = μ0 fμ(I)gμ(p∗) = μ0

(
1 +

μ∞/μ0 − 1

1 + Iμ/I

) ⎛⎜⎜⎜⎜⎜⎝1 −
(

p∗

p∗
μ

)0.5⎞⎟⎟⎟⎟⎟⎠
(2)

This two multiplicative corrections account for a range

of strain rates and particle softness (or stiffness), but also

for a system with a confined stress condition, as in the

most shear rheometers, and even for different magnitudes

of gravity, as in a centrifuge or on the moon [11]. Ad-

ditional corrections for cohesive particles involve the so-

called Bond-number (Bo), as studied elsewhere [17] and

ignored in the following. Apart from macroscopic fric-

tion, a rheological model has also been proposed for the

bulk density (volume fraction) as a function of softness

and shear rate:

φ(I, p∗) = φ0 fφ(I)gφ(p∗) = φ0

(
1 − I

Iφ

) ⎛⎜⎜⎜⎜⎝1 + p∗

p∗
φ

⎞⎟⎟⎟⎟⎠ (3)

with the critical or steady state density under shear, in

the limit of vanishing pressure and inertial number, φ0.

The inertial number for which dilation turns to fluidiza-

tion, Iφ, and the typical pressure level for which softness

leads to huge densities, p∗
φ [19]. Note that both correc-

tion terms are valid only for sufficiently small arguments.

Too large inertial numbers would fully fluidize the sys-

tem so that the rheology should be that of a granular fluid,

for which kinetic theory applies, while too large pressure

would lead to enormous overlaps, for which the contact

model and the particle simulation become questionable.

In the following, the considered inertial numbers are I <
0.5, while the softness or pressure are p∗ < 0.1.

In order to complete the rheology for soft, compress-

ible particles, a new relation for the coordination number,

C, as function of pressure and shear rate is proposed here,

analogous to Eqs. (2) and (3) (but data are not shown):
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C(I, p∗) = C0 fC(I)gC(p∗) = C0

(
1 − I

IC

) (
1 +

(
p∗

p∗
C

)α)

(4)

with the critical or steady state coordination number

under slow shear and low pressure, C0, the inertial number

order of magnitude for which dilation would turn to flu-

idization, IC , the typical pressure level for which softness

leads to a considerable increase in coordination number,

p∗
C , and the power factor α. Note that all multiplicative

terms (1 ± ...) are first order Taylor expansions of pos-

sibly more realistic functions only, and μ0, φ0 and C0 are

constants but varying with different materials, i.e. when

changing the inter-particle friction coefficient μp.

5 Results

5.1 Globally averaged rheology for simple shear

For a system with very low inter-particle friction, μp =

0.01, we simulated the stress controlled simple shear using

the input parameters as shown in Table. 1, similar to Refs.

[11, 12, 17], except for the loading stiffness and restitution

coefficient. We vary both shear rate (γ̇ from 0.0001 to 1

s−1) and confining stress (p∗ from 0.0025 to 0.1) to investi-

gate the rate and softness dependencies. Unless specified,

all the fitted functions shown in the following are using the

data from homogeneous simple shear.

In Fig. 1, we plot the steady state bulk density (vol-

ume fraction) against the inertial number from our stress

controlled homogeneous simple shear. Using the proposed

φ(I, p∗) rheological function in Eq. (3), all our data are col-

lapsing with the fitted curves; even for the highly inertial

regime (I > 0.1) the bulk density is captured. However,

if we check these curves focusing on only softness depen-

dence as shown in Fig. 2, the lowest bulk density data (ma-

genta) are actually deviating more from the fitting curve,

and thus the low bulk density is not well captured.

In Fig. 2, we look at the confining stress dependence

on the bulk density. When we keep the shear rate con-

stant, the bulk density is increasing linearly with confining

stress/pressure. Our data also fits well using the function

from [11], which means our particle flow is also having a

pressure dependence.

To check the quality of our fitting, we normalized our

simple shear data using the fitted rheological model Eq.

(3), φ(I, p∗). Up to I around 0.1, all the data points stay

within 2% deviation range with no clear dependence on

the inertial number, and this deviation increases slightly

(still within 3%) when the inertial number goes above

0.1. However, the overall fitting quality is satisfactory (all

within ± 3 %), and our rheological model is capturing well

the bulk density of dense granular flow.

As for the macroscopic friction (Fig. 3), our improved

rheological model is capturing well the friction behavior

with deviation within ±5%. However, for coordination

number (data not shown here), the deviation goes up to

±25%, which indicates a further improvement for Eq. (4)

is still needed.
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Figure 1. Bulk density, φ, plotted against inertial number, I, us-
ing stress controlled simple shear. Two paths are chosen here:

(i) softness p∗ = const., vary shear rate γ̇; (ii) γ̇ = const., vary

softness p∗, as shown in the legend, different colors refer to dif-

ferent shear rates or confining stresses. The homogeneous data

are fitted using φ(I, p∗) , with φ0 = 0.65, Iφ = 2.44 and p∗
φ = 0.38.
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Figure 2. Bulk density, φ, plotted against softness, p∗, for the

same simulations as in Fig. 1. Note that here we neglect the

fitting lines from path (i), which are vertical straight lines with

constant p∗.

5.2 Local rheology from split bottom ring shear
cell

The steady state bulk density from the center of shear

bands in the split bottom ring shear cell are plotted on top

of simple shear data as shown in Fig. 4. The split bot-

tom shear cell data in low softness regime (p∗ < 0.01)
are collapsing almost perfectly with the simple shear data

with only a slightly larger scattering except for high inertia

regime (I > 0.01). For high softness regime (p∗ > 0.01),
the split bottom shear cell data are consistently deviating

up to +5% in all the investigated inertial numbers. And

for the softness dependence as shown in Fig. 4(b), the de-

viation of split bottom ring shear cell data show the same

increasing trend with increasing softness as simple shear

data. The agreement between the two simulation setups is

really good.
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Figure 3. Macroscopic friction, μ = τ∗/p∗, plotted against iner-

tial number, I, from the same simulations as in Fig. 1. The data

are fitted using μ(I, p∗) as Eq. (2), with μ0 = 0.15, μ∞ = 0.36,

Iμ = 0.09 and p∗
μ = 0.60.
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Figure 4. Bulk density comparison between simple shear and

split bottom shear. The simulation data are normalized by the

proposed rheology prediction φ(I, p∗) in Eq. (3). Blue and purple

points are the split bottom shear cell data with softness p∗ > 0.01

and p∗ < 0.01 respectively.

6 Conclusion

The proposed rheological model for dense granular flow

are checked using stress controlled simple shear simula-

tions with looking at both inertial number and softness

dependence. With increasing inertial number inside the

system, the flow becomes more dilute, going towards col-

lisional flow, where our model could not capture the be-

havior. Nevertheless, for granular flow with bulk density

(volume fraction) above 0.5 and inertial number below 0.1,

our model gives very good bulk density and macroscopic

friction descriptions of the influences both from inertia and

softness in a sheared granular flow. Good agreement be-

tween the globally averaged simple shear box data and

locally averaged center of shear band data inside a split

bottom ring shear cell is achieved and further verifies the
universality/applicability of the improved local rheologi-

cal model. Future work will include the development of

extending our model towards non-local inhomogeneous

rheology as well as for cohesive systems.
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