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Fig. 1. The computational domain for wuid ow for male
case geometry. The symmetric channel with vibrating vocal
folds is considered. The inlet, outlet and vibrating parts of the
boundary are shown. The two con gurations of the channel
for two di erent vocal folds models are shown.

motion for the vocal folds coupled with the incompress-
ible Navier-Stokes equations via interface conditions, see
Figs. 1, 2. First, the uid ow in the computational do-
main surrounding the vibrating vocal fold is described.
To this end the Arbitrary Lagrangian Eulerian method
is applied in order to treat the motion of the computa-
tional domain. Further the motion of the vocal folds is
described as linear 2D elastic continuum on the reference
domain, i.e. Lagrangian concept is applied. In order to
simplify the model a two degrees of freedom structure is
used. The interface conditions are presented.

2.1 Arbitrary Lagrangian Eulerian method

First, the time dependence of the computational uid

ow domain £2/ needs to be addressed. Here, the so-
called arbitrary Lagrangian-Fulerian (ALE) is used, see
e.g. [15]. In order to apply this method a regular smooth
one-to-one ALE mapping A of the reference con gura-
tion 2/ onto the current con guration 2/, i.e it maps
the point X from the reference con guration X € Qg
on the point z of the current con guration z € 2/ at
any time instant ¢. The point = with a xed reference
X moves in time x = A(X,t) with the domain velocity
de ned by

wp(x,t) = %—?(XJ), = A(X,1). (€]

Further, the time derivative with respect to the reference
frame is introduced as ALE derivative. The ALE derivate
is then given as

DAf _of

where the function f is the transformation of the function
f onto the reference frame, i.e. f(X,t) = f(A(X,1),t)
for any X € Qg. The ALE derivative then satisfy (see
(15])

DAf
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Fig. 2. The computational domain for uid ow for the
female case geometry. The symmetric channel with vibrating
vocal folds is considered. The inlet, outlet and vibrating parts
of the boundary are shown. The two con gurations of the
channel for two di erent vocal folds models are shown.

2.2 Incompressible Navier-Stokes equations

The ow of an incompressible viscous uid in the do-
main Q{ is described by the system of the incompress-
ible Navier-Stokes equations (see, e.g., [16]) written in
the ALE form
DA :

P~ * A0 —wp)- Vv =divr!, (@)
V-v=0.

Here v = (vy,v2) is the uid velocity vector, p is the

constant uid density, and 7/ = (Tifj) is the uid stress
tensor given by '

7/ = —pl + 2D (v), (5)

where p is the pressure, x> 0 is the constant uid vis-
cosity, d;; denotes the Kronecker symbol and D is the
symmetric part of the velocity gradient given by

D(v) = 3 (Vo + (Vo)"). ®)

For the system (4) the initial condition v(x,0) =
vO(x) for x € Qg is speci ed. Further the boundary
conditions needs to be prescribed on the boundary BQ{
of the computational domain. The boundary 8!2[ is as-
sumed to be formed by mutually disjoint parts 89{ =
I'1 U T Uy, where I't denotes the inlet part of the
boundary, I'p is the outlet part of the boundary and
Iy denotes the ( xed and moving) wall. The following
boundary conditions are prescribed

a) v=wv; on I7,
b) wv=wp on Iy, @)

1
c) _n'Tf+§p('U'n)7'U:prefna on I'o,

where p,.; denotes a reference mean pressure value at
the outlet (we set p,.; = 0) and n is the unit outward
normal vector to 92, and wv; is the inlet velocity. For
the analysis of the boundary condition 7c) see e.g. [17],
[18]. Particularly this type of boundary condition treats
well the cases of the (backward) in ow of the uid at
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the outlet part of the boundary I'p. For this reason this
boundary condition can be also used at the inlet bound-
ary. This means that the condition 7, a) can be replaced
by the condition

-1
—n -7/ +§p(v-n)*'u =prn. (8)

The boundary condition (8) means that on the inlet in-
stead of the inlet ow velocity v; the the inlet pressure
pr or, as pr.y = 0, the pressure drop Ap = pr — Dres
between the inlet and the outlet part of the boudnary.
Let us also mention here, that the practical realization of
particulary the Dirichlet boundary condition (inlet veloc-
ity) can be realized either as the Dirichlet lift function,
i.e. v = vy + vy with vy approximations being zero on
the inlet part of the boundary, or using a penalization.
In this paper both approaches were tested.

2.3 Structure model

Elastic structure. The deformation of vocal folds is de-
scribed as deformation of elastic structure. Let us con-
sider a bounded domain 2 c R? representing the vocal
fold. The displacement of the structure is denoted by u,
which is a function © = w(X, t) de ned at a time instant
t € (0,7) and a point X = (X1, Xo) € 2°.

The deformation of the elastic body is modelled by
the dynamic elasticity. The equations of motion of an
elastic body have the form

0*u e
psﬁ —divr® = 5 (9)
where f = (f1, f2) is the density of the volume force, p*
denotes the density of the structure and the stress tensor
Ts IS given by the generalized Hooke law for isotropic
material in the form

7° = AN epp(u) [+ 2p°e(u)x (10)

where A% and n® are the so-called Lame coe cients. The
small strain tensor e = (e;;) then is given by

e(u) = 3 (Vu+ (Vu)"), (11)

where V denotes the gradient operator with respect to
variables X, Xs.

Similarly as for uid, the initial and boundary con-
ditions are prescribed for system (9, i.e. the initial con-
ditions read u(-,0) = 0 and %—’;(-,0) = 0. The boundary
0f2, is then decomposed in two disjoint parts, the mov-
ing interface I}, = I, and the other ( xed) part of
boundary I'f,. The boundary conditions then read

ayn-t°=n-7v7 on Iy, (12)
b) u=0 on Ip.

Fig. 3. Aecroelastic two degrees of freedom model (with
masses mi, mz, m3) in displaced position (displacements 6;
and 62) and resulting aerodynamic forces Fi and F».

Reduced order model. The vibrations of the vocal folds
usually exhibit two fundamantal frequencies. Such vibra-
tions can be described with an simpli ed aeroelastic two
degrees of freedom model. The motion of Iy, is governed
by the displacements 6, (¢) and 6,(¢) (upward positive) of
the two masses m; and mo, respectively (see Fig. 3). The
displacement vector 8 = (;,6-)" is obtained by the so-
lution of the following equations (see [10] for details)

M6 + BO +K6O = —F, (13)

where M is the mass matrix, K is the diagonal stifness
matrix with spring constants c¢;,c, on its diagonal and
B is the matrix of the proportional structural damping.
The mass matrix is given by

mq + 03 ms
M:( 1m34m21m3> (14)

where my, ms, m3 are masses. The components of F =
(F1, F,)T are the aerodynamical forces (downward posi-
tive). The proportional damping matrix is chosen as

B= €1M + &‘QK.

The aerodynamic forces F; F» in Eq. (13) depends on
ow velocity v and pressure p.

L
FO=7 [ @ dmn da,

and
h L
) =7 [ opyoOnae. )
0

where L is the length of the vocal fold, A is the depth
of the structure (i.e. third dimension in z axis), value
p¢(z,t) denotes the value of the pressure at time instant
t on the surface of the vocal fold positioned at = and
no(x,t) denotes the second component of the unit out-
ward normal to the surface of the vocal fold at position
x and time ¢.
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Table 1. Structural parameters considered for the aeroelastic
system in numerical examples; fi, f2 are the corresponding
natural frequencies of the structure in vacuo.

Model F Model M
m [kg] 3.274 x 1077 [ 4.812 x 1077
I kg/m?] | 1.341 x 1072 | 2.351 x 107?
e [m] 1.133 x 1073 | 0.771 x 1073
c1 [N/m] 44.8 56
2 [N/m] 84.6 174.3

3 Numerical approximation

The presented uid-structure problem is rst decoupled.
The motion equations are time integrated with the aid
of Newmark method. The uid ow is approximated by
the stabilized nite element method. The coupled uid-
structure model is solved with the aid of strongly coupled
scheme.

The main attention is paid to the approximation of
the uid ow model. However, the application of the

nite element method for incompressible Navier-Stokes
equations requires to carefully treat several issues. The

rst one is the dominating advection in the momentum
equations. The second is the compatibility of the veloc-
ity/pressure spaces. Moreover, in order to obtain phys-
ically admissible solution it is usually necessary to ap-
ply suitable mesh re nement (e.g. anisotropically re ned
mesh, see [19]) combined with a stabilization technique,
see [20], [21], [22]. The applied stabilization scheme needs
to be modi ed in the case of the application on moving
domains (see [23]).

First the problem is time discretized, i.e the time in-
terval is divided 0 = tg < t; < --- < T, tp = kAt with a
constant time step At > 0. The velocity v and the pres-
sure p at time ¢,, are then approximated by »™ and p",
respectively. Furthermore, the ALE velocity wp(t,+1) is

approximated by wg“ computed at a point x = A(X, t,,41)

by
3“4(Xa t’n+1) - 4A(X7 tn) + A(Xa tnfl)
2At )
(15)
The ALE derivative of the velocity v at time ¢, is

approximated using the second-order backward di erence
formula, i.e.

wi (z) ~

DAy 3ot — 4o + !

Dt 2At ’

(16)

where at a given time instant ¢, ;; we denote vi(x) =
v"(A(X,t;)) with x = A(X, t,,41).

The time discretized problem is then formulated weakly
with the aid of the velocity space W = H'({2), the pres-
sure space Q@ = L2(£2) and the space of test functions

X = {’U S W;'U|F1UFWt = 0} (17)
Now, the weak formulation of the time discretized prob-
lem (4) is obtained with the multiplication by the test

functions ¢ € X,q € @, sumation, integration over Qf
and transformation with the aid of Green s theorem. The
weak solution U = (v, p) then satisfy equation

a(U, V) = L(V), forall V =(¢,9) € X xQ, (18)

where the form a(U, V') is de ned by

AU V) = 2 (0.9 + (7. D(9) , + (0,0, 0)

+/ }p(v-n)+v~<pd5.+(v-v,q)9, 19)
I'o 2

L) = ﬁ (4'0” — " go)n — /F Pretp - 1 dS,
(o]

and the convective form c(v*, v, ¢) reads

" v, ) = /{Z 29lb- Vo)p — 2p(v" - Viphud, (20)

where b = v* — 2wt The form c(v*, v, ¢) is obtained

from the convective term (v* - Vv, ¢), by integration by
parts and using the boundary conditions.

In order to apply the Galerkin nite element method
(FEM) to the discretization of the problem 18, we ap-
proximate the spaces W, X, @ by their nite dimensional
subspaces Wy, X, Qp, i.e.

X = A{vn € Wy, vn|r;nry, =0} (21)
The couple (X3, @) of the nite element spaces is cho-
sen based on a regular triangulation of the computational
domain such that it satisfy the Babuska Brezzi (BB) inf-
sup condition (see, e.g., [24], [25]). The spaces W}, X
and @y, are formed by the well-known Taylor-Hood P,/ P,
conforming nite elements used for the velocity/pressure
approximation. This means that p; is a linear function
and vy, is a quadratic vector-valued function on each el-
ement K € T;. The fully stabilized scheme is used (see,
e.g., [26], [21]).

The stabilized discrete problem reads: Find U, =
(vn, pr) € Wi, x Qp, such that v, satis es approximately
conditions (7), a), b), ¢)(i) and

a(Un, Vi) + Ly (Un, Vi) + Pu(Un, Vi) = L(V3) + Fr (Vi)
for all Vi, = (¢n,qn) € Xin X Q. (22)

The stabilization terms are de ned using the modi ed

test function de ned on each element K as

Y(V) =0k (b-V)p +Vq (23)

with b = (v — w%“). The stabilization terms then reads
as

. 3pv o F
LU, V)= —uv—divr! +p(b-V)v, (V)
(o )

F)y =Y (G @ — v uem)
KeTn

(24)
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and the div-div stabilization reads

Pu(U, V) = Z (V- v,V -p)k (25)
KeTh

Here, 0 > 0 and 7 > 0 are suitable chosen parameters.
The choice of the parameters §x and 7 is carried out
according to [26] and [22]. The parameter ¢k is de ned on
the basis of the local transport velocity, local element size
and local viscozity. In the case of the Taylor-Hood nite
elements and a bounded convection v ~ 1 the following
choice of parameters appears suitable:

Sk = 0*h%, (26)
where 7* > 0 and 6* > 0 are xed constants.

TK = Tx,

4 Numerical results

For the computations the uid density p = 1.2 kg m~2,

and uid kinematic viscosity v = 1.58 x 10~°> m?/s were
chosen. The distance of the masses from the center was
I = L/2, the lengths of sub- and supra- glottal regions
were Lo = 2L and L, = 2L, respectively. The height of
the channel was 2H,, where Hy = %go +mMaX,¢o,1) a(r)
and gq is the initial gap g(0) = go. The initial gap go was
chosen 0.4 mm and 0.6 mm, respectively.

Using the given shape and dimension of the vocal fold
and using the structural density p;, the total mass m, the
moment of inertia I and the excentricity e is computed.
The system is then replaced by the equivalent three mass
system where my, = 55(I + me? £ mel) and m =
my + mo + mg. The structural parameters were chosen
according [27], see Tab. 1. The presented results shows
the computed case with the prescribed inlet velocity. The
prescribed inlet pressure did not lead to an instability in
the considered range of velocities/pressures.

The solution of the aeroelastic system was performed
for two cases represented by Tab. 1. The solution of the

ow model (4), structure model (13) and interface condi-
tions was numerically approximated in a simpli ed geom-
etry shown in Figs. 1, 2. The aeroelastic response for the
is shown in Fig. 4 for Model F and in Fig. 5 for Model M
in time domain in terms of displacements 6, (¢) and 62 (t).
The vibrations of the structure die in time after a time
period due to both structural and strong aerodynamic
damping for lower ow velocities. With increasing ow
velocity the utter type of instability can be observed.
The critical velocity is in a good agreement with results
presented in [27]. The physical meaning of the instability
is so-called phonation onset which is an important voice
production characteristic in humans. The ow velocity
patterns are shown in Fig. 6, where the typical pressure
distribution and ow velocity magnitude pattern can be
observed.

5 Conclusion

In this paper a uid structure interaction problem of ow
induced vibrations of vocal folds was described. The nu-
merical approximations based on the nite method were

a)
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Fig. 4. The aeroelastic response of the system 61 (left), 62
(right) for the model F, gap go 0.6 mm and the inlet velocity
a) Vo 0.55m/s, b) Vo 0.58m/s, c) Vo  0.6m/s and d)
Vo 0.62m/s.

presented. The choice of the inlet and the outlet bound-
ary condition was discussed. On the considered model
problem only the prescribed inlet velocity formulations
were successful. The prescribed pressure di erence lead
to an additional non-physical damping of the resulting
aeroelastic system. This is particularly caused by the fact,
that the prescribed inlet pressure boundary condition is
imposed only weakly, and during the computation the
pressure is not constant in time, but depends on the vo-
cal fold vibrations.
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