Precision requirement of the photofission cross section for the nondestructive assay

Rei Kimura*, Hiroshi Sagara, and Satoshi Chiba
Tokyo Institute of Technology, 2-12-2 Ookayama Meguro-ku Tokyo, Japan

Abstract. Principle of the new NDA technique based on the photofission reaction rate ratio (PFRR) has been developed by Kimura et al for measurement of uranium enrichment by using the only relative measured counts of neutron produced by photofission reactions of \(^{235}\text{U}\) and \(^{238}\text{U}\) at different specific incident photon energies. In the past analysis, no attentions have been paid for relatively large uncertainty of photonuclear cross section of special nuclear materials around 10%. In the present paper, quantitative analysis was performed to reveal the impact of photonuclear cross section uncertainty to predicted value of the uranium enrichment by the PFRR methodology. And also, the requirement of photofission cross section precision was evaluated as less than 3%, to satisfy the uncertainty of PFRR methodology to within 5%.

1. Introduction

The nondestructive assay (NDA) techniques for quantifying special nuclear materials (SNMs) have been developed by many organizations and some of which have been successfully applied to uranium enrichment measurement [1–9]. One of the recent projects is Next Generation Safeguards Initiative in the United States which has been examined in a spent fuel NDA technique [2]. The other challenge of the NDA technique for quantification or even detection of SNMs in unknown forms, such as unknown waste, debris or concealed and shielded highly enriched uranium in containers, these have some technical difficulty as follows [10];

(1) Few self-generated neutron or photon emissions because of shielding
(2) Difficulty of measurement because of intensive gamma-ray backgrounds
(3) Low measurement reliability due to impurities and unknown information.

Recently, the development of the compact and quasi-monochromatic photon (X-ray) source generator has proceeded, which is expected to be realized as portable photon generator device with higher energy than the photonuclear threshold energy [11–14]. Its application is expected to be one of the NDA techniques.

A new NDA technique is aimed for uranium enrichment measurement, characterized by mathematical process which represents the correlation of the target enrichment and relative measured counts of neutron produced by the photofission reactions of \(^{235}\text{U}\) and \(^{238}\text{U}\) at different specific incident photon energies of 6 MeV and 11 MeV. Principle of the nuclear material isotopic composition measurement method based on the photofission reaction rate ratio (PFRR) was validated by small scale numerical simulation with good reproducibility of within 2% difference of predicted uranium enrichment and reported by Kimura et al. [10]. However, cross sections of the photonuclear reaction of interested nuclides relating to PERR have, in general, around 10% uncertainty, which may lead the huge impact to the accuracy of uranium enrichment measurement by the PFRR methodology. In the present paper, quantitative analysis was performed to reveal the impact of photonuclear cross section uncertainty to predicted value of the uranium enrichment by the PFRR methodology. And also, the requirement of photonuclear cross section precision was evaluated

2. Principle of the NDA technique based on the Photofission reaction rate ratio

The PFRR methodology mechanism is based on the difference of photonuclear cross section of different nuclides and different incident photon energies, these functions of the incident photon energies for the typical fertile and fissile nuclides of ENDF/B-VII.1 are shown in Fig. 1 [14]. These differences of cross sections make the differences of neutron production rate at the target of SNMs, for example, as shown in Fig. 2 [10].

The neutron production rates shown in Fig. 2 include the (\(\gamma, n\)), (\(\gamma, 2n\)), (\(\gamma, fission\)), and other neutron production reactions. In case of the maximum incident photon energy is under 11.27 MeV as threshold energy of (\(\gamma, 2n\)) reaction at \(^{238}\text{U}\) and \(^{235}\text{U}\) target, (\(\gamma, fission\)) counts can be extracted from the neutron counts by coincidence counting. In the PFRR methodology, the information of photofission reactions is utilized to improve the precision by the simplified mathematical process as removal of other reactions from the equation.

The photofission reaction rate \(R_i\) (\(i\) represents the specific incident photon energy spectrum) is described
by Eq. (1),
\[
R_i = \int \phi_i(E) \sum_{\text{nuc}} (N_{\text{nuc}} \sigma_{f,\text{nuc}}(E)) dE,
\]

where \(E \) is the photon energy, \(\phi_i(E) \) is the photon flux, \(N_{\text{nuc}} \) and \(\sigma_{f,\text{nuc}}(E) \) are number density and microscopic photonuclear reaction cross section of nuclide \(\text{nuc} \). In addition, parameters \(i \) and \(\text{nuc} \) are defined as 1, 2, 3 \ldots \(n \) and \(I, II, II \ldots n \). Further, \(A_{i,\text{nuc}} \) is defined as \(A_{i,\text{nuc}} = \int \phi_i(E) \sigma_{f,\text{nuc}}(E) dE \) and \(R_i \sim R_n \)-are divided by \(R_n \), Eq. (1) for each \(i, n \) can be transformed as Eq. (2), where \(A_{i,\text{nuc}} \) is known. The PFRR methodology requires the measurement value of the photonfission reaction rate \(R_i / R_n \) in order to calculate \(N_{\text{nuc}} / N_n \). The isotopic composition \(IC \) of nuclide \(\text{nuc} \) is calculated from \(N_{\text{nuc}} / N_n \) and Eq. (3).

\[
IC_{\text{nuc}} = \frac{N_{\text{nuc}}}{N_I + N_{II} + N_{III} + \cdots + N_n} = \frac{N_{\text{nuc}}}{N_I + N_{II} + N_{III} + \cdots + N_n + 1} \quad (3)
\]

Hence, the PFRR methodology induces the isotopic composition by only measuring relative value of the photonfission reaction \[10\].

3. Calculation model and methodology
MCEPH as a Monte Carlo code and ENDF/B-VII.1 as an evaluated nuclear data library were used for simulating the photonuclear reaction in the target [14,15]. Figure 3 shows the calculation model of the present study. In this model, the photon beam is assumed to be injected to the center of the thin target. This target consists of metallic uranium (235U and 238U, 235U enrichment is 5–90%) which density is 19.19/cm3.

Incident photons from the pencil beam (10^8 histories in this study) cause the photonfission reaction at the target. The fission reaction which occurred at the target is tallied as “R_i” of Eq. (2). This fission reaction include (\(\gamma \), fission) and (n, fission) because signal of (\(\gamma \), fission) and (n, fission) cannot be separated in the actual measurement by coincidence counting.

The error propagation formula of predicted 235U enrichment in the 235U–238U system was derived as Eq. (4),
\[
\varepsilon = \left(\frac{1}{N_{235U}/N_{238U} + 1} \right)^2 \left(\frac{1}{M_A \varepsilon_A} \right)^2 + \left(\frac{1}{M_B \varepsilon_B} \right)^2
\]

where, \(N_{235U}/N_{238U} \) and \(R_{\text{ratio}} \) was \(N_{\text{nuc}}/N_n \) and \(R_i / R_n \) of Eq. (2), \(\varepsilon_{0.238U} \) and \(\varepsilon_{0.235U} \) were relative error of the photonfission cross section of 238U and 235U. Other parameters in the Eq. (4) were described as follows:
\[
M_A = (A_{238U,n} - R_{\text{ratio}} A_{238U,i})
\]
\[
M_B = (R_{\text{ratio}} A_{235U,i} - A_{235U,n})
\]
\[
\varepsilon_A = \sqrt{\left(\varepsilon_{0.238U} A_{238U,n} \right)^2 + \left(\varepsilon_{0.235U} R_{\text{ratio}} A_{238U,i} \right)^2}
\]
\[
\varepsilon_B = \sqrt{\left(\varepsilon_{0.235U} R_{\text{ratio}} A_{235U,i} \right)^2 + \left(\varepsilon_{0.238U} A_{238U,n} \right)^2}
\]

4. Results and discussion
4.1. Estimation of the 235U enrichment based on the PFRR method
The results of the 235U enrichment prediction by PFRR method was shown in Fig. 4. The incident photon energies are 11 and 6 MeV that has the Gaussian shaped energy distribution (\(\sigma = 0.5 \) MeV) [10]. As shown in this figure, the present method showed good reproducibility of 235U enrichment, the principle of PFRR methodology was...
Figure 3. Calculation model on the MCNP code.

Figure 4. The predicted value of the 235U enrichment based on the PFRR due the 11 MeV/6 MeV incident photon that has the Gaussian shaped energy distribution [10].

Figure 5. The predicted value of 235U enrichment and its uncertainty with 10% cross section uncertainty.

Figure 6. The predicted value of 235U enrichment and its uncertainty with 3% cross section uncertainty.

5. Conclusion

The effect of the photofission cross section uncertainty to the predicted value of the 235U in the PFRR methodology was evaluated. This uncertainty was required to be 3% or less to keep less than 5% uncertainty of the predicted value of the 235U enrichment.

However, the current photonuclear cross section data of nuclear materials, namely, uranium and plutonium nuclides have generally 10% or more cross section uncertainty. Therefore, the photonuclear cross sections, especially photofission cross sections of uranium and plutonium, of these nuclides are strongly desired of precision improvement for uncertainty reduction of the PFRR methodology.

References

material in debris of melted fuel of Fukushima-Daiichi NPP (2013)

[14] M.B Chadwick, M. Herman, P. Oblozinsky, et al., Nucl. Data Sheets, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data 112, 2887-2996 82011)