Calculation of \((n,\alpha) \) reaction cross sections by using some Skyrme force parameters for Potassium (\(^{41}\text{K} \)) target nuclei

Eyup Tel\(^1\), Muhittin Sahan\(^1\), Hasançan Alkanlı\(^1\), Halide Sahan\(^1\), Mustafa Yigit\(^2\)

\(^1\)Osmaniye Korkut Ata University, Department of Physics, Osmaniye, Turkey
\(^2\)Aksaray University, Department of Physics, Aksaray, Turkey

Abstract. In this study, the \((n,\alpha)\) nuclear reaction cross section was calculated for \(^{41}\text{K} \) target nuclei for neutron and proton density parameters using SKa, SKb, SLy5, and SLy6 Skyrme force. Theoretical cross section for the \((n,\alpha)\) nuclear reaction was obtained using a formula constituted by Tel et al. (2008). Results are compared with experimental data from EXFOR. The calculated results from formula was found in a close agreement with experimental data.

1 Introduction

Potassium (with a symbol K, \(Z=19\)) presents in some fruits and vegetables such as peach and melons etc. [1-3]. In recent years, Potassium has been used in different area like medicine and agriculture etc. [1-5]. Nowadays, nuclear reactions have been using different cross section formula similar to Tel et al. formula [6]. The Hartree-Fock-Skyrme-Method is used for studying the properties and structure of nuclei [7-12]. In addition, many properties of nuclei are calculated using this method such as proton (\(\rho_p\)) and neutron (\(\rho_n\)) densities. In this calculation, we investigated the proton (\(\rho_p\)) and neutron (\(\rho_n\)) densities for \(^{41}\text{K} \) target nuclei using the Skyrme-Hartree-Fock [8, 10, 11] calculation method with the SKa, SKb, SLy5, and SLy6 force parameters [7, 13, 14]. From these calculations, the new proton and neutron densities were obtained. The theoretical results calculated for proton (\(\rho_p\)) and neutron (\(\rho_n\)) densities were used in the formula given by reference [6] for the \((n,\alpha)\) nuclear reaction cross section at incident neutron energy of 14-15 MeV [6].

2 Results and Discussion

In this study, we calculated the \((n,\alpha)\) theoretical nuclear reaction cross section for \(^{41}\text{K} \) target nuclei. We used SKa, SKb, SLy5, and SLy6, Skyrme force parameters for calculations [7, 13, 14]. SKa, SKb, SLy5, and SLy6, Skyrme force parameters were given in Table 1 and Fig. 1-4. These parameters were then used in the Skyrme-Hartree-Fock Program (HAFOMN) [11, 15]. Cross section calculations were obtained for target nucleus with radius of 1.8 fm and then were compared with the semi-empirical results constituted by Tel et al. formula [6]. For the mass numbers between 37 and 239, this formula is given as follows [6];

\[
\sigma_{(n,\alpha)} = 16.15(A^{1/3} + 1)^2 e^{-3.04s} \tag{1}
\]

where \(A\) is mass number of atom, \(s\) is asymmetry parameter (\(S=(N-Z)/A\)).

Table 1. SKa, SKb, SLy5, and SLy6 Skyrme Force Parameters [7, 13, 14].

<table>
<thead>
<tr>
<th></th>
<th>SKa</th>
<th>SKb</th>
<th>SLy5</th>
<th>SLy6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0)</td>
<td>-1602.78</td>
<td>-1602.78</td>
<td>-2484.88</td>
<td>-2479.50</td>
</tr>
<tr>
<td>(t_1)</td>
<td>570.88</td>
<td>570.88</td>
<td>483.13</td>
<td>462.18</td>
</tr>
<tr>
<td>(t_2)</td>
<td>-67.70</td>
<td>-67.70</td>
<td>-549.40</td>
<td>-448.61</td>
</tr>
<tr>
<td>(t_3)</td>
<td>8000</td>
<td>8000</td>
<td>13763</td>
<td>13673</td>
</tr>
<tr>
<td>(t_4)</td>
<td>125</td>
<td>125</td>
<td>126</td>
<td>122.00</td>
</tr>
<tr>
<td>(x_0)</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.778</td>
<td>0.825</td>
</tr>
<tr>
<td>(x_1)</td>
<td>0</td>
<td>-0.165</td>
<td>-0.328</td>
<td>-0.465</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>0</td>
<td>-1.00</td>
<td>-1</td>
</tr>
<tr>
<td>(x_3)</td>
<td>-0.286</td>
<td>-0.286</td>
<td>1.267</td>
<td>1.355</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1/3</td>
<td>1/3</td>
<td>1/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

In earlier works, neutron and proton data for asymmetry parameter (\(S=(N-Z)/A\)) were used. But, for this study, we used in the formula developed by Tel et al. [6] proton and neutron density data for asymmetry parameter (\(S=(\rho_p-\rho_n)/\rho_n\)) [6,7,9]. Theoretical cross section values obtained with the cross section values \(^{41}\text{K}(n,\alpha)\)\(^{23}\text{Cl} \) results that are obtained using SKa, SKb, SLy5, and SLy6 parameters are given in Table 2 [7,13-14]. The neutron-number (\(N=22\)) and neutron densities (\(\rho_n\)) are higher than proton-number (\(Z=19\)) and proton densities (\(\rho_p\)) because of \(Z=19\) and \(N=22\) for \(^{41}\text{K} \). The obtained value of the proton density (\(\rho_p\)) for \(^{41}\text{K} \) target nuclei at the \(r=1.8\) fm have approximately been from 0.075 (for SKa and SLy5), 0.074 (for SKb), 0.079 (for SLy6) [7, 13, 14]. Moreover, value of the neutron density (\(\rho_n\)) for \(^{41}\text{K} \) target nuclei at the \(r=1.8\) fm have
approximately been from 0.081 (for SKa and SKb), 0.082 (for Sly5), 0.087 (for SLy6) and also obtained value of the asymmetry parameter for 41K target nuclei at the 0.040 (for Ska), 0.043 (for SKb and SLy5), 0.044 (for Sly6) [7, 13, 14]. (see Figs. 1-4 and Table 2). Many experimental data were found from 1953 to 2017 for Potassium (for 41K(n,α)38Cl) [16]. Some experimental cross sections data were given in this study. For example; Garuska et al. found the cross section to be 30 ± 3 mb at 14.6 MeV neutron induced reactions [16, 17]. Filatenkov et al. found the cross section as to be 34.7 mb ± 1.6 mb at 14.1 ± 0.1 MeV neutron induced reactions [16-18]. Ercan et al. determined the experimental cross section as to be 36 ± 3 mb at 14.6 ± 0.1 MeV neutron induced reactions [16, 19]. Ikeda et al. found the cross section to be 37.6 ± 2.8 mb at 13.97 MeV neutron induced reactions [16, 20]. Anders et al. found the cross section as to be 33 ± 1.3 mb at 14.7 ± 0.3 MeV neutron induced reactions [16, 21]. Bormann et al. found the cross section to be 12 ± 5 mb at 14.1 ± 0.05 MeV neutron induced reactions [16, 22]. Janczyszyn et al. found the cross section as to be 11 ± 2 mb at 14.0 MeV neutron induced reactions [16, 23].

Table 2 Theoretical cross section results for 41K(n,α) nuclear reactions for r=1.8 fm

<table>
<thead>
<tr>
<th>SHF</th>
<th>Proton densities</th>
<th>Neutron densities</th>
<th>Asymmetry parameter</th>
<th>σ_Theo (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ska</td>
<td>0.075</td>
<td>0.081</td>
<td>0.040</td>
<td>10.08</td>
</tr>
<tr>
<td>SKb</td>
<td>0.074</td>
<td>0.081</td>
<td>0.043</td>
<td>9.086</td>
</tr>
<tr>
<td>SLy5</td>
<td>0.075</td>
<td>0.082</td>
<td>0.043</td>
<td>9.142</td>
</tr>
<tr>
<td>SLy6</td>
<td>0.079</td>
<td>0.087</td>
<td>0.044</td>
<td>9.046</td>
</tr>
</tbody>
</table>

We compared our data of target 41K with literature data from EXFOR around 14-15 MeV [16, 18]. In this study, the obtained neutron and proton density results were depicted in Figs. 1-4. For neutron incident energy at 14.00 MeV, the experimental data is 11 ± 2 mb [23] and theoretically calculations are about 10.08 mb for Ska, 9.086 mb for SKb, 9.142 mb for SLy5, and 9.046 mb for SLy6 at r = 1.8 fm. These parameters were then used in the Skyrme-Hartree-Fock-program (HAFOMN) [7, 13-15]. Empirical results are found in compatible with theoretical data obtained in reference [6].

3 Conclusion

Many researchers have studied experimental and theoretical cross sections in recent years. In this study, (n,α) nuclear theoretical cross section reactions have been investigated for 41K target nuclei incident neutron energy of 14-15 MeV. The attained data have also been contrasted on the existing some experimental values in EXFOR [16]. The attained theoretical and experimental results can be explained as follows;

In order to be calculate (n,α) reaction cross section, we used the formula developed by Tel et al. formula [6]. In Equation 1 developed by Tel et al. [6] can be used to calculate cross section with SKa, SKb, SLy5 and SLy6 Skyrme-force-parameters for 41K target nuclei [7, 13-14]. The obtained results were compared with experimental result for 1.8 fm radius (see Figs. 1-4). In order to be calculate (n,α) different radius reaction cross section for 41K target nuclei, we used Tel et al formula [6] and we obtained theoretical cross section agreement with experimental results (see Figs. 1-4).
Fig. 4. 41K(n,α)38Cl SKa proton and neutron density values

Acknowledgment

The study was supported by Osmaniye Korkut Ata University (OKU) Science Research Projects Coordination Unit with the grant number: OKÜBAP-2015-PT3-012.

References