Influence of Li conditioning on Lower Hybrid Current Drive efficiency in H-mode and L-mode plasmas on EAST

Marc Gonichea,*, Miaohui Lib, Yves Peyssona, Yingjie Chenb, Bojiang Dingb, Annika Ekedahlb, Haiqing Liub, Yong Liub, Jinqing Qiana, Xiuda Yangb, Qing Zhangb, Tao Zhange, Sun Zhenb, Xiao-Lan Zoud and the EAST Team

aCEA, IRFM, F-13108 Saint Paul-lez-Durance, France

bInstitute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

Abstract. The lower hybrid current drive efficiency on the EAST tokamak is estimated on a large database of low loop voltage discharges ($V_L<120$ mV) covering the 2016 campaign starting with lithium-free plasma facing components and ending with strong cumulated deposition of lithium. The efficiency is found to vary in a wide range from 0.6 to 1.2×1019 A.W$^{-1}$.m$^{-2}$. No deleterious effect of the density on the efficiency is found between 2.3 and 3.2×1019 m$^{-3}$. The high efficiency occurs after strong lithium evaporation. The low effective charge Z_{eff} and the higher temperature $<T_e>$ of these discharges, can account for the high efficiency according to the expected scaling with Z_{eff} and $<T_e>$. Modelling with a ray-tracing code coupled to a Fokker-Planck solver supports this result, assuming that the fast electron transport is reduced in the zero loop voltage discharge with high efficiency.

1. Introduction

Lower Hybrid waves are recognized to be an efficient tool to drive current with high efficiency. Fully or partially (V_{loop}=0.1V) non-inductive long discharges have been obtained with lower hybrid current drive (LHCD) on several superconducting tokamaks: Tore Supra [1,2,3], TRIAM [4], EAST [5]. A one-minute H-mode discharge has been recently obtained on EAST [6]. This discharge, achieved with LHCD combined with other heating methods (ICRH, ECRH and NBI), has low and steady plasma radiation thanks to the lithium coating of the plasma facing components (PFC) and in particular of the divertor tungsten tiles. Lithium coverage reduces the effective charge Z_{eff} of the plasma by trapping the oxygen atoms [7,8]. It also reduces the particle recycling leading to a change of the n_e and T_e profiles at the plasma edge, including the scrape-off layer [4]. Both effects can be beneficial to the penetration of the wave and the current drive efficiency $\eta=n R_{\text{ILH}}/P_{\text{ILH}}$.

2. The experimental database

LHCD efficiency was estimated from a data base covering 160 L-mode and H-mode discharges with low loop voltage ($-0.02V<V_L<0.12V$), a line-averaged density ($\langle n_e\rangle_{\text{lin}}$ in the 2.0-3.5×1019 m$^{-3}$ range. The plasma is in the upper single-null (USN) configuration with a current I_p in the 0.4-0.5MA range and a toroidal field of 2.25T or 2.45T. The database, covering the 2016 experimental campaign from March to October, includes discharges with lithium-free plasma facing components (5-10 March), discharges with lithium dropping during the plasma ramp-up phase (10 March) and discharges with lithium coating before the experimental day (11 March – 11 October). Data are averaged on a time slice of 3 seconds (respectively from 1 to 3 s) for 83% (respectively 100%) of the discharges. LHCD is provided by the 2.45GHz (0-1.5MW) and 4.6GHz (1-2.7MW) multifunction antennas [9]. The 2.45GHz (resp. 4.6GHz) antenna is an array of 5 (resp. 12) rows of 32 (resp. 48) narrow waveguides. In addition, ICRH (0-0.8MW), ECRH (0-0.5MW) and NBI (0-2.7MW) provide plasma heating. Total power is in the 2-5MW range. The parallel wave index N_p of the 2.45GHz (resp. 4.6GHz) antenna can be varied between 1.85 and 2.6 (resp. 1.6 and 2.25), but most of the discharges were performed with $N_p=1.8$ or 2.1 on both antennas. The mean power reflection coefficient RC is in the 2-7% (resp. 1-6%) range for the 2.45GHz (resp.4.6GHz) antenna. This range is consistent with the RF modelling, provided by the ALOHA code [10], indicating an equivalent range of electron density in front of the launcher of 2-10 (resp. 1.3-5) time the cut-off density at 2.45GHz (resp.4.6GHz).

The current drive efficiency for low loop voltage (V_L) discharges can be estimated by plotting V_L as a function of the normalized LHCD power $P_{\text{norm}}=P_{\text{ILH}}/(\pi n_0 R_{\text{ILH}})$. Keeping the first-order term of the dielectric tensor, namely the hot conductivity σ_{hot}, the relative loop voltage drop $\Delta V_L/V_L = (V_{\text{ILH}}/V_L)$ with respect of the ohmic heating loop voltage V_L can be expressed as

$$\rho \left[\Delta V_L/V_L \right] \frac{(1 - \rho)}{1 + \eta_{\text{h}} P_{\text{norm}}} = (\eta + \eta_{\text{h}}) P_{\text{norm}}$$

(1)

With the following notations: $\rho = (R_{\text{sp}})_{ILH}/(R_{\text{sp}})_{OH}$, $(Z_{\text{ILH}}/Z_{\text{OH}})^{3/2}$, $(R_{\text{sp}})_{IL}$ and $(R_{\text{sp}})_{OH}$ are the plasma resistivity in the LHCD and ohmic phase, respectively, η is the LHCD efficiency, $\eta_{\text{h}}=\sigma_{\text{hot}}/(P_{\text{norm}} \sigma_{\text{sp}})$, σ_{sp} being the Spitzer conductivity. For low loop voltage discharges $dP_{\text{norm}}=1/\eta - P_{\text{norm}} <1$ and equation (1) can be linearized as follows

*Corresponding author: marc.goniche@cea.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
\[V_L = \frac{V_0}{\eta} \left(\frac{1}{\eta} - \frac{P}{P_{\text{norm}}} \right) \] \hspace{1cm} (2)

We therefore expect the slope of the curve \(V_L \) vs \(P_{\text{norm}} \) to be weakly varying as long as \(P_{\text{norm}} \) does not vary too much (\(P_{\text{norm}} \approx 0.8-1.3 \) for these discharges). This quasi-linear relationship, verified on Tore Supra [2], allows an estimate of the efficiency with an accuracy of \(\pm 10\% \) for \(V_L \approx 100 \text{mV} \). This efficiency includes the bootstrap current in the total non-inductive current but in these low beta discharges, the fraction of bootstrap current does not exceed 10-15\% of the plasma current.

On EAST, the loop voltage with 1MW launched by the 2.45GHz antenna (\(V_L = 0.27 \text{V} \)) is much higher than that with the same power launched by the 4.6GHz antenna (\(V_L = 0.15 \text{V} \)) suggesting a lower efficiency for the 2.45GHz antenna [9, 11]. On a large database where the two current drive systems were combined, the loop voltage data (but also the stored energy data) are found to be more consistent assuming the efficiency of the 2.45GHz antenna is half of that of the 4.6GHz. Even with a matched wave index the power spectra \(P(N) \) are slightly different and the efficiency, estimated from a \(1/N^2 \)-weighted directivity, indicates a higher value by \(-20\% \) for the 4.6GHz antenna. However, modelling with a ray-tracing code coupled to a Fokker-Planck solver (C3P0/LUKE) [12] does not indicate a higher LHCD efficiency of the 4.6GHz antenna.

Parasitic interaction of the wave with the plasma edge such as wave scattering or parametric decay has been evoked as a possible explanation of this reduction in efficiency. However, the loss by these mechanisms can be estimated to be lower than that with the same power launched by the 2.45GHz antenna. This quasi-linear approximation which holds for cold plasma with no toroidal effect and further details on power absorption from C3P0/LUKE modelling will be given in section 4.

3. Experimental LHCD efficiency

Figure 1 shows the loop voltage as a function of the normalized power \(P_{\text{norm}} \) for the \(B_t/I_p=2.25T/0.4MA \) case. Most of the points lie between \(\eta = 0.7 \times 10^{19} \text{A.W}^{-1}. \text{m}^{-2} \) and \(\eta = 0.85 \times 10^{19} \text{A.W}^{-1}. \text{m}^{-2} \) (broken lines) with no ordering of the efficiency with the density indicated by the colour code.

However, there are a significant number of LHCD discharges which have a higher efficiency \((\eta = 0.7 \times 10^{19} \text{A.W}^{-1}. \text{m}^{-2}) \). When the extrapolated efficiency is plotted as a function of the discharge number, these high efficiency discharges are all obtained late in the campaign when the cumulated amount of the lithium evaporated exceeds 150-200g (Figure 2). Lithium aerosols during the discharge, between the two broken lines of figure 2, do not seem to improve the efficiency. Most of the H-mode discharges have a high efficiency, between 0.8 and 1.15\% of the plasma current. Late in the campaign, the plasma current was raised to 0.5MA (\(B_t=2.45T \)). The efficiency is in the 0.85-1.1\% of the plasma current range and, on a statistical basis, no improvement with respect of the 2.25T/0.4MA case (same period of the campaign) is observed. On other tokamaks, a beneficial effect of \(I_p \) (scaling as \(I_p^{1/2} \)) [13,14] has been inferred and a slight increase of \(-12\% \) could be expected when the current is increased from 0.4MA to 0.5MA. The internal inductance \(l_i \), from the equilibrium code EFIT, decreases with plasma density from 1.2\% to 0.95\% (\(<n_e>_{\text{lin}} = 2.3 \times 10^{19} \text{m}^{-3} \)) to 0.95\% to 0.1\% (\(<n_e>_{\text{lin}} = 3.0 \times 10^{19} \text{m}^{-3} \)) with no significant effect of the LH power.
The correlation between the efficiency and the power reflection coefficient of the 4.6GHz launcher RC4.6 is even better (figure 3-b). The increase of the RC with the launched power indicates non-linear interaction of the RF electric field with the plasma facing the antenna, namely ponderomotive forces as observed and modelled on Tore Supra [15]. Although a change of RC from 1-2% to 4-5% cannot explain a modification of the wave spectrum such as the CD efficiency is reduced by a factor 2, it suggests that the spectrum could be further modified when the RF electric is high due to wave scattering or parametric decay [9, 11].

4. LHCD Modelling

From this database, 5 discharges with same line-average density ($<n_e>_{lin} = 2.95 \times 10^{19}$ m$^{-3}$), plasma current ($I_p = 0.4$MA) and magnetic field ($B_t = 2.25$T) were selected: 61824 (before any lithium evaporation), 62209-62296-62349 (after weak lithium evaporation, 12-25-37g) and 66526 (after strong lithium evaporation, >150g). The 3 weak lithium evaporation discharges were performed with different values of $N//_0$ (1.82-2.04-1.60). The density profiles, from the Thomson scattering system, were re-scaled to match the line-average density provided by the far infra-red interferometer (with a scaling factor varying between 0.7 and 1.0). The temperature profiles are also provided by the Thomson scattering diagnostic. These profiles, along a vertical chord, were mapped to the mid-plane using the EFIT equilibrium code (figure 4). For these discharges the profiles are very similar except #66526 (high lithium case) which has a less peaked density and a more peaked temperature. The total LH power varies between 1.9MW and 2.5MW, the mean effective charge Z_{eff} between 2.7 and 4.9 according to the bremsstrahlung diagnostic ($Z_{eff} = Brem$). Z_{eff} was also estimated from the radiated power with the Matthews’ law ($Z_{eff} = Mat$) [16] (Table1).
The loop voltage varies between 59 mV and 88 mV for the no or weak lithium cases and is -1 mV for the strong lithium case. The resulting efficiency is found to be between 0.70 and 0.80×10¹⁹ A.W⁻¹.m⁻² for the no or weak lithium cases but jumps to 1.2×10¹⁹ A.W⁻¹.m⁻² for the strong lithium case. Following the temperature scaling (~T_e⁰.⁵) found on Tore Supra [13] and FTU [14] and the Z_eff (~(5+Z_eff)⁻¹) scaling from the 1-D Fisch’s theory[17], the efficiency normalized to the volume-averaged temperature <T_e>≈1keV and Z_eff=2 lies between 0.96 and 1.25 except for the no lithium case for which the Z_eff could be over-estimated and the low N_e discharge for which the wave accessibility is poor.

In order to validate further the effect of lithium, the C3PO/LUKE code was run for these 5 discharges. Most of the power is absorbed at r/a=0.5-0.7 with, for some of them, a significant part of the power absorbed in the very core (r/a<0.3). It was found that for the 4 no/weak lithium discharges, with residual loop voltage, the efficiency is correctly modelled when a diffusion coefficient of the fast electrons is included in the model. For the strong lithium discharge, the modelled and experimental efficiencies match when no transport for the fast electrons is assumed (Figure 5-a). This could be the result of an internal transport barrier for this fully non-inductive discharge which has a much higher central electron temperature. The modelled internal inductance is also consistent with the values obtained from the EFIT equilibrium code within 10-15% in most cases (Figure 5-b).

5. Conclusions

The analysis of LHCD efficiency for discharges with more than 70% of the current is driven by the 4.6GHz antenna shows a beneficial effect of wall coverage with lithium. This was also observed with the 2.45GHz antenna [18]. This effect is partly due to the lower radius of the plasma. However, the normalized efficiency of the discharge performed after strong lithium evaporation indicates a higher efficiency by about 25% and edge plasma–wave interaction affecting the wave spectrum cannot be ruled out. This assumption is also supported by the correlation between the efficiency and the RF electric field which is a function of launched power and reflection coefficient. However, no deleterious effect of the density between 2.3 and 3.2×10¹⁹ m⁻³ on the efficiency is found from this large database.

The CEA/IRFM members warmly acknowledge the hospitality of the ASIPP Team during the visits to EAST. This work is supported by the National Magnetic Confinement Fusion Program of China (Grant No 2015GB10200) and the Associated Laboratory CEA/IRFM – CAS/ASIPP. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European research and training programme under grant agreement N° 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References

For the no or weak lithium cases but jumps to

Following the temperature scaling (~T_e)

15% in most cases (Figure 5

obtained from the EFIT equilibrium code within 10

inductance is also consistent with the values

central electron temperature. The modelled internal

non

result of an internal transport barrier for this fully

- electrons is assumed (Figure 5

- efficiencies match when no transport for the fast

lithium discharge, the modelled and experimental

modelled when a diffusion coefficient of the fast

residual loop voltage, the efficiency is correctly

that for the 4 no/weak lithium discharges, with

absorbed in the very core ($r/a<0.3$). It was found

Most of the power is absorbed at $r/a=0.5$

C3PO/LUKE code was run for these 5 discharges.

In order to validate further the effect of lithium, the

References