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Polarized parton densities and spin dependent structure func-
tion of the nucleon
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Abstract. We study the polarized parton distribution functions (PPDFs) from recent ex-
perimental data at the next-to-leading order (NLO) approximation in the fixed-flavor
number scheme. In this analysis, we can compare our results with experimental data such
as very recent COMPASS data. It would be very worth to study the PPDFs parametriza-
tion form when we want to use this new COMPASS data in QCD analysis on polarized
proton structure and parton distribution functions.

1 Introduction

Determination of fundamental spin structure in terms of their polarized quarks and gluons is one of the
main challenges in polarized hadron physics. Despite the spin physics theory of polarized hadrons has
been compatible with the experimental data of polarized nucleon, some fundamental aspects of the
polarized parton distribution and structure function are still weakly determined. One of the important
points in polarized hadron structure is understanding of nucleon’s total angular momentum in terms of
the single contributions of polarized parton. The total angular momentum of the polarized nucleon in
terms of its parton spin, i.e. quark (Σ) and gluon spin(G), and also quark and gluon orbital momentum
(Lq, Lg)is as following

1
2
=

1
2
Σ(Q2) +G(Q2) + Lq(Q2) + Lg(Q2) , (1)

In this equation, the first two terms present the fraction of the proton spin which carried by quarks and
gluons. In fact, it would be worth to be able to measure each contribution in above equation. In this
regard, we need to have the polarized parton distribution functions (PPDFs) as a function of x and Q2.
Also the dependence of the PPDFs on the Q2 can be obtained using the DGLAP evolution equations
[DGLAP] in perturbative QCD. Very recent analysis on polarized splitting functions in Mellin space
has been reported at the next-to-next-to-leading order (NNLO) accuracy. Very recent theoretical and
experimental developments in spin physics are addressed in Ref. [1].

We have different analysis to determine PPDFs parametrization such as simple polynomials ap-
proach, neural networks for PPDFs parametrization and etc such as DSSV [2–4], NNPDF [5, 6] and
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JAM collaboration. On the other hand, we have a different kind of experimental data such as inclusive
and semi-inclusive DIS data. COMPASS and JLAB have been reported very recent DIS measurements
[7].

In Refs.[8–16] we have extracted PPDFs from different approaches, such as Jacobi polynomials
for PPDFs parameterization up to NLO and different available experimental data.

This paper is organized as follows. In Sec. 2 we present the polarized proton structure in Mellin-
Moment space. The functional form for PPDFs is presented in Sec. 3 at the NLO. Finally our results
and conclusions are discussed in Sec. 4.

2 Formalism

According to Mellin N-moment space, the Mellin moment of function f which is depending on mo-
mentum fraction x is defined as:

M[ f ,N] ≡
∫ 1

0
dx xN−1 f (x) . (2)

In this regard, the polarized nucleon structure function is defined in terms of PPDFs at the NLO
as following [17]

M[g1,N] =
1
2

∑
q

e2
q

{[
1 +
αs

2π
∆CN

q

]
[δq(N,Q2) + δq̄(N,Q2)]

+
αs

2π
2∆CN

g δg(N,Q
2)
}
. (3)

In above equation, δq(N,Q2),δq̄(N,Q2) and δg(N,Q2) are moment of polarized parton distribution
functions. Also αs is strong coupling constant which can be determined by the following equation at
NLO [18]

1
as(Q2)

=
1

as(Q2
0)
+ β0 ln

Q
2

Q2
0



−β1 ln


as(Q2)[1 + β1as(Q2

0)]

as(Q2
0)[1 + β1as(Q2)]

 , (4)

where as =
αs
4π and αs(Q2

0) is strong coupling constant at input scale. In this analysis, we fixed Nf = 3
in the perturbative QCD evolution at Fixed-flavor number scheme at NLO with massless partonic
flavors {u, d, s}. Also we fixed αs(Q2

0) = 0.580 which is related to αs(M2
Z) = 0.118.

Now by having the moments of polarized structure function, we have the polarized structure func-
tion xg1(x,Q2) in x-space using Jacobi polynomials approach:

xg1(x,Q2) = xβ(1 − x)α
Nmax∑
n=0

Θ
α,β
n (x) ×

n∑
j=0

c(n)
j (α, β) M[xg1, j + 2] , (5)

where Nmax is the number of polynomials which we have considered Nmax = 9 and we used α = 3.0
and β = 0.5 [9–12]. Also, in above equation Θα,βn (x) is as following

2

EPJ Web of Conferences 164, 08005 (2017)	 DOI: 10.1051/epjconf/201716408005
ICNFP 2016



EPJ Web of Conferences

JAM collaboration. On the other hand, we have a different kind of experimental data such as inclusive
and semi-inclusive DIS data. COMPASS and JLAB have been reported very recent DIS measurements
[7].

In Refs.[8–16] we have extracted PPDFs from different approaches, such as Jacobi polynomials
for PPDFs parameterization up to NLO and different available experimental data.

This paper is organized as follows. In Sec. 2 we present the polarized proton structure in Mellin-
Moment space. The functional form for PPDFs is presented in Sec. 3 at the NLO. Finally our results
and conclusions are discussed in Sec. 4.

2 Formalism

According to Mellin N-moment space, the Mellin moment of function f which is depending on mo-
mentum fraction x is defined as:

M[ f ,N] ≡
∫ 1

0
dx xN−1 f (x) . (2)

In this regard, the polarized nucleon structure function is defined in terms of PPDFs at the NLO
as following [17]

M[g1,N] =
1
2

∑
q

e2
q

{[
1 +
αs

2π
∆CN

q

]
[δq(N,Q2) + δq̄(N,Q2)]

+
αs

2π
2∆CN

g δg(N,Q
2)
}
. (3)

In above equation, δq(N,Q2),δq̄(N,Q2) and δg(N,Q2) are moment of polarized parton distribution
functions. Also αs is strong coupling constant which can be determined by the following equation at
NLO [18]

1
as(Q2)

=
1

as(Q2
0)
+ β0 ln

Q
2

Q2
0



−β1 ln


as(Q2)[1 + β1as(Q2

0)]

as(Q2
0)[1 + β1as(Q2)]

 , (4)

where as =
αs
4π and αs(Q2

0) is strong coupling constant at input scale. In this analysis, we fixed Nf = 3
in the perturbative QCD evolution at Fixed-flavor number scheme at NLO with massless partonic
flavors {u, d, s}. Also we fixed αs(Q2

0) = 0.580 which is related to αs(M2
Z) = 0.118.

Now by having the moments of polarized structure function, we have the polarized structure func-
tion xg1(x,Q2) in x-space using Jacobi polynomials approach:

xg1(x,Q2) = xβ(1 − x)α
Nmax∑
n=0

Θ
α,β
n (x) ×

n∑
j=0

c(n)
j (α, β) M[xg1, j + 2] , (5)

where Nmax is the number of polynomials which we have considered Nmax = 9 and we used α = 3.0
and β = 0.5 [9–12]. Also, in above equation Θα,βn (x) is as following

ICNFP 2016

Θ
α,β
n (x) =

n∑
j=0

c(n)
j (α, β) x j, (6)

So by having M[xg1,N] at any values of Q2 in Eq. 3, one can determine the polarized structure
xg1(x,Q2) using Jacobi polynomials approach according to Eq. 4. The comparison of different values
of Nmax in the NLO approximation at Q2 = 2.5 GeV2 is presented in Fig. 1.
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Figure 1. Our results for polarized structure function at Q2 = 2.5 GeV2 and for different values of Nmax= 3, 5,7,9
in Jacobi polynomials approach.

3 Polarized Parton Distribution

In this analysis we used the AKS[13] parametrization at Q2
0 = 1 GeV2. According to this parametriza-

tion the polarized parton distribution functions ( δq = δu+δū, δd+δd̄, δū, δd̄, δs̄ and δg) at the NLO
and the initial scale are as following:

x δq = Nqηqxaq (1 − x)bq (1 + cqx0.5 + dqx) , (7)

The normalization constant is Nq

1
Nq

=

(
1 + dq

aq

aq + bq + 1

)
B
(
aq, bq + 1

)

+cqB
(
aq +

1
2
, bq + 1

)
, (8)

and B(a, b) is the Euler beta function.
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Figure 2. The comparison of parton polarized distribution functions for different parametrization in the NLO
approximation, such as DSSV ,LSS, AAC, AKS with an initial scale.

In Fig. 2, we present the evolution of the distribution of polarized PDFs using AKS[13], DSSV[3],
LSS[19], AAC[20] parametrization.

In Fig. 3 we show our results for polarized structure function xg1 as a function of x at < Q2 >=
50 GeV2 at the NLO. In this figure, we used the polarized parton distribution functions from Ref. [13]
and compare our results with very recent COMPASS experimental data.
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Figure 3. Comparison of polarized structure functionxg1 with recent experimental COMPASS data at NLO
approximation using the polarized parton distribution functions from Ref. [13].

4 Conclusion

In this analysis, we investigate the polarized parton distributions at the NLO to see how much com-
patible our previous parametrization with very recent experimental COMPASS data. Also, we found
that the behavior of our parametrization is good agreement with very recent COMPASS data. Our
analysis show us the Jacobi polynomial approach is very good approach for extracting the PPDFs in
QCD analysis as well.
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