Breakup of 8B on 58Ni at energies around the Coulomb barrier and the astrophysical $S_{17}(0)$ factor revisited

J.C. Morales-Rivera1,2, T.L. Belyaeva1, P. Amador-Valenzuela2, E.F. Aguilera2, E. Martinez-Quiroz2, and J.J. Kolata3

1Universidad Autónoma del Estado de México, C. P. 50000, Toluca, México
2Depto. de Aceleradores, Instituto Nacional de Investigaciones Nucleares, A. P. 18-1027, C. P. 11801 México, D. F., México
3Physics Department, University of Notre Dame, Notre Dame, Indiana, 46556, USA

Abstract. Calculations of breakup and direct proton transfer for the 8B+58Ni system at energies around the Coulomb barrier ($E_{B,\text{lab}}=22.95$ MeV) were performed by the continuum-discretized coupled channels (CDCC) method and the coupled-reaction-channels (CRC) method, respectively. For the 7Be+58Ni interaction, we used a semimicroscopic optical model potential (OMP) that combines microscopic calculations of the mean-field double folding potential and a phenomenological construction of the dynamical polarization potential (DPP). The 7Be angular distribution at $E_{\text{lab}}=25.75$ MeV from the 8B breakup on 58Ni was calculated and the spectroscopic factor for 8B \rightarrow 7Be+p vertex, $S_{\text{expt}}=1.10 \pm 0.05$, was deduced. The astrophysical $S_{17}(0)$ factor was calculated equal to 20.7 ± 1.1 eV·b, being in good agreement with the previously reported values.

1 Introduction

The study of nuclear reactions with the proton-halo exotic 8B nuclei is of great interest for nuclear astrophysics in view of the problem of stellar nucleosynthesis and the production of high-energy neutrinos in the Sun. In particular, the breakup of 8B in the field of heavy targets can provide information about an inverse process, the proton radiative capture by 7Be, which occurs in the Sun at energies about 20 keV. The 8B+58Ni system has been extensively studied both experimentally and theoretically by different research groups around the world. We studied the breakup of 8B in the field of 58Ni with the realistic 7Be core-target potential calculated in the semi-microscopic OMP. The analysis of the breakup, transfer and elastic-scattering cross sections allowed us to obtain the experimental spectroscopic factor S_{expt} and extract the astrophysical $S_{17}(0)$ factor by using the ANC method. A comparison was made with calculations performed by using the Woods-Saxon potentials previously reported [1].

2 Elastic scattering calculations

For the 7Be+58Ni interaction an optical potential of the form $U = V_F + V_P + iW + V_C$ was used, where V_F is a double folded potential, $iW = i(W_Vf(x_V) + W_Df(x_D))$, V_C represent the absorption and Coulomb potential, respectively and V_P is the DPP, implemented by S. A. Goncharov [2]:

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
\[V_P = \alpha(E)W_V(E)f(x_V) + \beta(E) \cdot 4W_D(E) \frac{df(x_D)}{dx_D}, \tag{1} \]

where the Woods-Saxon form factor \(f(x_{V,D}) \) was used. To calculate \(V_F \), we used for the projectile an empirical density model that was constructed on the basis of the global parametrization, described in [3]; for the target, we considered an appropriately normalized empirical charge density in a three-parameter modified Fermi form with values taken from [4]. The radial part of the potential were calculated by using the CDM3Y6-Paris nucleon-nucleon effective interaction [5]. To find the OMP parameters for the \(p^+7\text{Be} \) and \(p^+^{58}\text{Ni} \) interactions, the systematics proposed in [6] was used.

Figure 1: a) Elastic scattering angular distributions of \(^8\text{B} \) from \(^{58}\text{Ni} \) at energies around the Coulomb barrier calculated by the CDCC in comparison with the experimental data [8]. b) The differential breakup cross section of the \(^8\text{B}^+^{58}\text{Ni} \) reaction at \(E_{\text{lab}} = 25.75 \text{ MeV} \). CDCC calculations performed with two values of the spectroscopic factors are shown in comparison with the experimental data of [9].

The elastic scattering angular distributions were calculated for the \(^8\text{B}^+^{58}\text{Ni} \) system at laboratory energies \(E_{\text{lab}} = 20.7, 23.4, 25.3, 27.2 \) and 29.3 MeV using the FRESCO code [7]. Figure 1 (a) shows the calculations in comparison with the data reported in [8]. Our results agree well with the data, particularly at energies above the Coulomb barrier. At energies below the barrier, the calculations slightly differ from the experimental data. Table 1 shows the DPP parameters used to fit the \(^7\text{Be}^+^{58}\text{Ni} \) system data of [8]. For the energies 20.7 and 23.4 MeV, values of \(r_{V,D} = 1.2 \) and \(a_{V,D} = 0.4 \text{ fm} \) were used, while for the rest of the energies, the values \(r_{V,D} = 1.28 \) and \(a_{V,D} = 0.45 \text{ fm} \) showed the best fit to the data. The values \(W_V = 90 \) and \(W_D = 5 \text{ MeV} \) were kept constant for all energies.

<table>
<thead>
<tr>
<th>(E_{\text{lab}})[MeV]</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(E_{\text{lab}})[MeV]</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(E_{\text{lab}})[MeV]</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.7</td>
<td>-1.25</td>
<td>15.0</td>
<td>25.3</td>
<td>-0.28</td>
<td>0</td>
<td>27.2</td>
<td>-0.08</td>
<td>0</td>
</tr>
<tr>
<td>23.4</td>
<td>0</td>
<td>0</td>
<td>25.75</td>
<td>-0.23</td>
<td>0</td>
<td>29.3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3 Breakup and transfer analysis

We assume a cluster structure of \(^8\text{B} = p \oplus ^7\text{Be} \). The valence proton has an orbital angular momentum \(l \), thus having total angular momentum relative to the core \(J = l + s \). In the case of breakup above
Table 2: Breakup and reaction cross sections for the 8B+58Ni system.

<table>
<thead>
<tr>
<th>E_{lab} (MeV)</th>
<th>$\sigma_{\text{bu th}}$ (mb)</th>
<th>$\sigma_{\text{R th}}$ (mb)</th>
<th>$\sigma_{\text{R exp}}$ (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4</td>
<td>194.56</td>
<td>382.26</td>
<td>365±50</td>
</tr>
<tr>
<td>25.3</td>
<td>198.92</td>
<td>606.92</td>
<td>515±50</td>
</tr>
<tr>
<td>27.2</td>
<td>204.80</td>
<td>797.80</td>
<td>827±45</td>
</tr>
<tr>
<td>29.3</td>
<td>209.24</td>
<td>978.24</td>
<td>1007±40</td>
</tr>
</tbody>
</table>

a Experimental data taken from ref. [8]

the Coulomb barrier, the excited states of proton in the continuum were represented by 167 bins with orbital angular momenta $l = 0-4$ up to energies of 6 MeV. Figure 1 (b) shows the CDCC calculations of the 8B breakup differential cross section for the 8B+58Ni reaction with spectroscopic factors $S_{\text{expt}} = 1.0$ and $S_{\text{exp}} = 1.1$, respectively, corresponding to the 8B\rightarrow^7Be+p vertex. The results are compared with the data of [9].

We calculated the direct proton transfer in the 58Ni(8B,7Be)59Cu reaction, which can contribute to the 58Ni(8B,7Be) reaction section. Excited states of 59Cu up to $E_x = 3.580$ MeV were taken into consideration. The calculation showed that proton stripping provides less then 3% of the total 7Be emission cross sections.

Table 2 shows the breakup and reaction cross sections calculated for the 8B+58Ni system at energies around the Coulomb barrier in comparison with the data taken from Ref. [8]. The reaction cross sections were obtained by fitting the elastic scattering angular distributions using CDCC calculations. An accepted value of the spectroscopic factor for the 8B\rightarrow^7Be+p vertex, $S_{\text{expt}}=1.10\pm0.05$, allowed us to estimate the ANC, $C^2 = 0.54 \pm 0.03$ fm$^{-1}$, and the astrophysical $S_{17}(0)$ factor to be equal to 20.7 ± 1.1 eV-b, which are in good accordance with the previously published results [1].

4 Conclusions

We have performed CDCC calculations of the elastic scattering, breakup, direct proton transfer, and reaction cross sections for the 8B+58Ni system at energies around the Coulomb barrier. All cross sections were calculated by using the 7Be58Ni semi-microscopical optical model potential containing the folding and DPP parts. The direct proton transfer contribution to the reaction cross section is about 3%. The astrophysical $S_{17}(0)$ factor equal to 20.7 ± 1.1 eV-b was calculated using the ANC method, being in good agreement with previously reported values.

References
