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Abstract. In this contribution, we present our recent compact master formulas for the
multiphoton amplitudes of a scalar propagator in a constant background field using the
worldline fomulation of quantum field theory. The constant field has been included non-
perturbatively, which is crucial for strong external fields. A possible application is the
scattering of photons by electrons in a strong magnetic field, a process that has been a
subject of great interest since the discovery of astrophysical objects like radio pulsars,
which provide evidence that magnetic fields of the order of 1012G are present in na-
ture. The presence of a strong external field leads to a strong deviation from the classical
scattering amplitudes. We explicitly work out the Compton scattering amplitude in a
magnetic field, which is a process of potential relevance for astrophysics. Our final result
is compact and suitable for numerical integration.

1 Introduction

The “worldline” or “Feynman-Schwinger” [1] representation of the one-loop effective action in scalar
QED is

Γ[A] = −
∫ ∞

0

dT
T

e−m2T
∫

P
Dx(τ) e−

∫ T
0 dτ[ 1

4 ẋ2+ieẋµAµ(x(τ))] . (1)

Here m and T denote the mass and proper-time of the loop scalar, and
∫

P Dx(τ) the path integral over
closed loops in (Euclidean) spacetime with periodicity T in the proper-time. The above path integral
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can be converted into the following master formula for the N-photon (off-shell) amplitudes [2, 3]

Γ(k1, ε1; . . . ; kN , εN) = −(−ie)N(2π)DδD
( N∑

i=1

ki

)∫ ∞
0

dT
T

(4πT )−
D
2 e−m2T

N∏
i=1

∫ T

0
dτi

× exp
{[ N∑

i, j=1

[1
2

GBi jki · k j − iĠBi jεi · k j +
1
2

G̈Bi jεi · ε j

]}∣∣∣∣
ε1ε2···εN

. (2)

Here GBi j, ĠBi j and G̈Bi j are the “bosonic” worldline Green’s function and its first and second deriva-
tives with respect to the first variable (GBi j ≡ GB(τi − τ j) etc):

GBi j = |τi − τ j| −
(τi − τ j)2

T
, ĠBi j = sign(τi − τ j) − 2

τi − τ j

T
, G̈Bi j = 2δ(τi − τ j) −

2
T
. (3)

GBi j is the Green’s function for the operator d2

dτ2 with the periodic boundary condition, also obeying

the “string-inspired” (SI) boundary conditions:
∫ T

0 dτiGBi j =
∫ T

0 dτ jGBi j = 0. The notation
∣∣∣
ε1ε2···εN

means taking linear terms in each polarization vector after expanding the exponential. This master
formula is extremely compact and well-organized with respect to gauge invariance [2–4]. See [3] for
its generalization to the spinor QED case, [6, 7] for multi-loop generalizations, and [5] for a review on
the worldline formalism. For scalar QED in the presence of a constant background field Fµν, a similar
“Bern-Kosower type” master formula was obtained in [8, 9]:

Γ(k1, ε1; . . . ; kN , εN) = −(−ie)N(2π)DδD
( N∑

i=1

ki

) ∫ ∞
0

dT
T

(4πT )−
D
2 e−m2T det−

1
2

[ sin(Z)
Z

]

×
N∏

i=1

∫ T

0
dτi exp

{ N∑
i, j=1

[1
2

ki · GBi j · k j − iεi · ĠBi j · k j +
1
2
εi · G̈Bi j · ε j

]}∣∣∣∣
ε1ε2···εN

, (4)

where Z = eFT . The main differences between this master formula and the vacuum one in Eq. (2)
is the additional factor det−1

[
sinZ
Z

]
, and the replacement of the GBi j Green’s function with a new one

GBi j that is a function of the external field:

GBi j =
T
2
Z2
( Z
sin(Z)

e−iZĠBi j + iZĠBi j − 1
)
. (5)

This Green’s function also follows the SI boundary conditions. This master formula, and particularly
its extension to spinor QED [5, 10], are generally more efficient for constant field calculations in QED
than the standard method based on Feynman diagrams. They have already been applied to photonic
processes in a constant field like vacuum polarization [5, 10, 11], photon splitting (in a magnetic
field) [5, 12] and the two loop Euler-Heisenberg Lagrangian [5, 9]. Much less has been done for
the corresponding amplitudes with an open line (propagator) instead of the closed loop, either in
vacuum or in an external field. In 1996 Daikouji et al. [13] obtained the following “Bern-Kosower
type” master formula for the N-photon dressed scalar propagator in vacuum (see also [14] for a recent
rederivation):

Dpp′ (k1, ε1; · · · ; kN , εN) = (−ie)N(2π)DδD
(
p + p′ +

N∑
i=1

ki

) ∫ ∞
0

dT e−m2T

×
N∏

i=1

∫ T

0
dτi e−T [p+ 1

T
∑N

i=1(kiτi−iεi)]2+
∑N

i, j=1[∆i jki·k j−2i•∆i jεi·k j−•∆•i jεi·ε j]
∣∣∣∣
ε1ε2···εN

, (6)
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1
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Z
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Dpp′ (k1, ε1; · · · ; kN , εN) = (−ie)N(2π)DδD
(
p + p′ +

N∑
i=1

ki

) ∫ ∞
0

dT e−m2T

×
N∏

i=1

∫ T

0
dτi e−T [p+ 1

T
∑N

i=1(kiτi−iεi)]2+
∑N

i, j=1[∆i jki·k j−2i•∆i jεi·k j−•∆•i jεi·ε j]
∣∣∣∣
ε1ε2···εN

, (6)

where ∆i j is the open line Green’s function adopted to Dirichlet boundary conditions (DBC)

∆(τi, τ j) =
τiτ j

T
+
|τi − τ j|

2
−
τi + τ j

2
, ∆(0, τ j) = ∆(T, τ j) = ∆(τi, 0) = ∆(τi, T ) = 0 . (7)

For this Green’s function, we need to distinguish between derivatives with respect to first and second

k3

+
−p p′

k2 k1 k3 kN

· · ·

+ −p p′

k2 k1 k3 kN

· · ·

−p p′

k1 k2 k3 kN

· · ·

−p p′

k1 k2 kN

· · ·

......

+ +

+ +

Figure 1. Multi-photon Compton-scattering diagram.

argument, since the DBC break the translation invariance in proper-time. A convenient notation is
[15] to use left and right dots to indicate derivatives with respect to the first and the second argument,
respectively:

•∆i j =
τ j

T
+

1
2

sign(τi − τ j) −
1
2
, •∆•i j =

1
T
− δ(τi − τ j) ,

∆•i j =
τi

T
− 1

2
sign(τi − τ j) −

1
2
, 2∆i j = GBi j −GBi0 −GB0 j , (8)

where the last formula gives a relation between ∆i j and GBi j [16]. The organization of the paper is as
follows. In section 2 we include the constant field into the Green’s function of a scalar propagator,
then dress it with N photons to obtain master formulas in configuration and momentum space. In
section 3 we work the momentum space formula out for N = 2 to find a compact representation
of the Compton scattering cross section in a general constant field. In section 4 we summarize our
discussion.

2 Scalar propagator in a constant field

In the previous section we have presented a master formula for an open line in vacuum, in the follow-
ing we consider a constant external field to be included in this master formula. We first start with a
free propagator in a constant field.

2.1 Free propagator

A constant field in the Fock-Schwinger gauge is written as

Aµ(y) = −
1
2

Fµν(y − x′)ν , A(y = x′) = 0 (x′ is the reference point of the potential) . (9)

After decomposing the arbitrary trajectory x(τ) into a straight-line part and a fluctuation part

x(τ) = x′ +
τ

T
(x − x′) + q(τ) , q(T ) = q(0) = 0 (DBC) , (10)
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and using (9) and Qµ =
∫ T

0 dτqµ(τ), with some manipulations the free scalar propagator can be written
as

Dxx′ [A] =

∫ ∞
0

dT e−m2T
∫ x(T )=x

x(0)=x′
Dxe−

∫ T
0 dτ
[

1
4 ẋ2+ieẋ·A(x)

]

=

∫ ∞
0

dT e−m2T− (x−x′ )2
4T

∫
Dq(τ) e−

∫ T
0 dτ 1

4 q
(
− d2

dτ2
+2ieF d

dτ

)
q+ ie

T (x−x′)FQ , (11)

which is gaussian. Now besides the free path integral normalization
∫

Dq(τ)e−
∫ T

0 dτq
(
− 1

4
d2

dτ2

)
q
=(

4πT
)− D

2 [5] we have to take into account the ratio of the field-dependent and free path integral nor-
malization:

Det′−
1
2

P

(
− 1

4
d2

dτ2 +
1
2 ieF d

dτ

)

Det′−
1
2

P

(
− 1

4
d2

dτ2

) = Det′−
1
2

P

(
1 − 2ieF

( d
dτ
)−1
)
= det−

1
2

[ sin(Z)
Z
]
, (12)

where we have eliminated the zero mode which exists in the path integral by putting a ‘prime’. Now
we have to introduce a new Green’s function which is again related to the one with SI boundary
conditions in (5) for a constant field:

∆
�i j
≡ 〈τi |

( d2

dτ2 − 2ieF
d
dτ

)−1
| τ j〉DBC =

1
2

(
GBi j − GBi0 − GB0 j + GB00

)
. (13)

After using this Green’s function in the usual completing-the-square procedure, we get the following
well-known representation of the scalar propagator in a constant external field in x-space:

Dxx′ (F) =

∫ ∞
0

dTe−m2T e−
(x−x′ )2

4T (4πT )−
D
2 det−

1
2

[
sin(eFT )

eFT

]
e
∫ T

0 dτ
∫ T

0 dτ′ ie
T (x−x′)F∆

�
(τ,τ′) ie

T F(x−x′)

=

∫ ∞
0

dTe−m2T (4πT )−
D
2 det

1
2

[
Z

sinZ

]
e−

1
4T (x−x′)Z cotZ(x−x′) . (14)

After Fourier transforming its representation in momentum space gives

Dpp′ (F) = (2π)Dδ(p + p′)D(p, F) , D(p, F) =
∫ ∞

0
dT e−m2T e−T p( tanZ

Z )p

det
1
2 [cosZ]

. (15)

2.2 Dressed propagator

Now, if we dress the scalar propagator with N photons in addition to the constant field, we write the
potential as A = Aext + Aphot which the former is the same as in (9) and the later is written as a sum of
plane waves, each photon is represented as a vertex operator:

Aµphot =

N∑
i=1

ε
µ
i eiki·x , VA[k, ε] =

∫ T

0
dτε · ẋ(τ) eik·x(τ) =

∫ T

0
dτeik·x(τ)+ε·ẋ(τ)

∣∣∣∣
lin(ε)
. (16)

The path integral representation of the scalar propagator in a constant field dressed with N photons is
written as

Dxx′ (F| k1, ε1; · · · ; kN , εN) = (−ie)N
∫ ∞

0
dTe−m2T

∫
P

Dxe−
∫ T

0 dτ[ 1
4 ẋ2+ieẋ·Aext(x)]VA[k1, ε1] · · ·VA[kN , εN] . (17)
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0

dTe−m2T e−
(x−x′ )2

4T (4πT )−
D
2 det−

1
2

[
sin(eFT )

eFT

]
e
∫ T

0 dτ
∫ T

0 dτ′ ie
T (x−x′)F∆

�
(τ,τ′) ie

T F(x−x′)

=

∫ ∞
0

dTe−m2T (4πT )−
D
2 det

1
2
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Z

sinZ
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i=1

ε
µ
i eiki·x , VA[k, ε] =
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dτε · ẋ(τ) eik·x(τ) =

∫ T

0
dτeik·x(τ)+ε·ẋ(τ)

∣∣∣∣
lin(ε)
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The path integral representation of the scalar propagator in a constant field dressed with N photons is
written as

Dxx′ (F| k1, ε1; · · · ; kN , εN) = (−ie)N
∫ ∞

0
dTe−m2T

∫
P

Dxe−
∫ T

0 dτ[ 1
4 ẋ2+ieẋ·Aext(x)]VA[k1, ε1] · · ·VA[kN , εN] . (17)

After applying the path decomposition (10) and completing the square we get (x− = x − x′)

Dxx′ (F| k1, ε1; · · · ; kN , εN) = (−ie)N
∫ ∞

0
dTe−m2T (4πT )−

D
2 det

1
2
[ Z
sinZ

]
e−

1
4T x−Z cotZx−

×
∫ T

0
dτ1 · · ·

∫ T

0
dτN e

∑N
i=1

(
εi· x−T +iki· x−τiT +iki·x′

)

×exp
[ N∑

i, j=1

(
ki ∆
�

i j k j − 2iεi
•∆
�

i j k j − εi
•∆
�

•
i j ε j

)
+

2e
T

x−
N∑

i=1

(
F ◦∆
�

i ki − iF ◦∆
�

•
i εi

)]∣∣∣∣
ε1ε2···εN

, (18)

where a left (right) ‘open circle’ on ∆
�

(τ, τ′) denotes an integral
∫ T

0 dτ (
∫ T

0 dτ′). This x-space master
formula was obtained by McKeon and Sherry for a purely magnetic field [17]. Now we can Fourier
transform to momentum space to get

Dpp′ (F | k1, ε1; · · · ; kN , εN) = (−ie)N(2π)Dδ
(
p + p′ +

N∑
i=1

ki

) ∫ ∞
0

dTe−m2T 1

det
1
2 [cosZ]

×
∫ T

0
dτ1 · · ·

∫ T

0
dτN e

∑N
i, j=1

(
ki ∆
�

i j k j−2iεi
•∆
�

i j k j−εi
•∆
�

•
i j ε j

)
e−Tb( tanZ

Z )b
∣∣∣∣
ε1ε2···εN

,

b ≡ p +
1
T

N∑
i=1

[(
τi − 2ieF ◦∆

�
i

)
ki − i

(
1 − 2ieF ◦∆

�

•
i

)
εi

]
. (19)

Diagrammatically, these master formula hold the full information on the set of Feynman diagrams
appearing in Fig. 1, with the full scalar propagator in a constant field (usually indicated by a double
line).

3 Compton scattering in a constant field
Now, let us apply our momentum space master formula in (19) to work out the Compton scattering
cross section, corresponding to N = 2. Notice that our master formula describes the untruncated
dressed propagator so in applying it to physical processes one has to truncate the external scalars, we
define the matrix element T as

T (F| k1, ε1; · · · ; kN , εN) =
Dpp′ (F| k1, ε1; · · · ; kN , εN)

D(p, F)D(p′, F)
. (20)

Moreover, it will be convenient to Wick rotate from Euclidean to Minkowski space (see [18] for our
conventions). Expanding out the exponentials in (19) up to terms linear in both polarizations we arrive
at

Dpp′ (F | k1, ε1; k2, ε2) = e2
∫ ∞

0
dT

e−m2T

det
1
2 [cosZ]

∫ T

0
dτ1dτ2e−Tb0( tanZ

Z )b0+
∑2

i, j=1 ki ∆
�

i j k j
ε1M12ε2 , (21)

with

b0 ≡ p +
1
T

2∑
i=1

(
τi − 2ieF ◦∆

�
i

)
ki ,

M12 ≡ 2•∆
�

•
12 −

2
T

(
1 + 2ie◦∆

�

•T
1 F
) tanZ
Z
(
1 − 2ieF ◦∆

�

•
2

)

+4
[
(1 + 2ie◦∆

�

•T
1 F)

tanZ
Z b0 −

2∑
i=1

•∆
�

1i ki

][
b0

tanZ
Z
(
1 − 2ieF ◦∆

�

•
2

)
−

2∑
i=1

ki∆
�

•
i2

]
. (22)
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To obtain the cross section we square and sum over the photon polarizations via
∑

pol ε
∗µ
i ε
ν
i → gµν

which finally leads to the following expression for the Compton cross section:

∑
pol

T ∗T =
e4

|D(p, F)2|D(p′, F)2

∫ ∞
0

dT ′
e−m2T ′

det
1
2 [cosZ′]

∫ T ′

0
dτ′1

∫ T ′

0
dτ′2 e−T ′b∗0( tanZ′

Z′ )b∗0+
∑2

i, j=1 ki ∆
�

′
i j k j

×
∫ ∞

0
dT

e−m2T

det
1
2 [cosZ]

∫ T

0
dτ1

∫ T

0
dτ2 e−Tb0( tanZ

Z )b0+
∑2

i, j=1 ki ∆
�

i j k j tr(M′†12M12) . (23)

4 Summary

In this short report we have extended our previous master formulas for multiphoton amplitudes in
vacuum in scalar QED [14] to include a constant external field using the worldline formalism, see
[18] for more details. Our master formula is valid off-shell, and combines the various orderings of
the N photons along the scalar line. We have worked out the cross section for the case of N = 2,
that is linear Compton scattering in the field, reaching a compact integral representation suitable for
numerical evaluation. This cross section is, for the magnetic field case, of importance for astrophysics,
but appears to have been studied so far only in the strong-field limit [19].
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