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Abstract. In this note, we study on extended thermodynamics of AdS black holes by
varying cosmological constant. We found and discussed pressure and volume of both
bulk and boundary physics through AdS/CFT correspondence. In particular, we derive
the relation between thermodynamic volume and a chemical potential for M2 brane dual
to four dimensional AdS space. In addition, we show that thermodynamic volume of
hyperbolic black hole is related to ‘entanglement pressure’ coming from a generalized
first law of entanglement entropy.

1 Introduction and Summary

Thermodynamics of black hole is the starting point of all controversies in quantum gravity. It has given
rise to many puzzles, new approaches and fusion researches among various areas in physics. One of
the approaches supported by most people is the holographic principle [1, 2]. Maldacena found that this
principle can be realized exactly with various backgrounds in string theory[3]. This correspondence
was extended to the black holes immediately[4]. Thus the thermodynamics of black holes is identified
with thermodynamics of conformal field theories through AdS/CFT correspondence.

Recently there have been meaningful attempts to extend thermodynamics of black holes. It is
simply to consider a pressure of the bulk thermodynamics [5]. To this end, the cosmological constant
can be regarded as a thermodynamic variable, pressure. It is quite natural, since the cosmological
constant plays a role of energy-momentum in the bulk. Under this generalization, the mass of black
hole is interpreted as enthalpy rather than internal energy. Moreover, a van der Waals like critical
point appears and provides a richer phase structure. [6–8]

Smarr relation shows the effect of the pressure directly even for the fixed cosmological constant,
while The first law of black hole thermodynamics doesn’t give us any sign of the pressure without
varying cosmological constant. Furthermore, it reveals the conjugate (thermodynamic) volume to the
pressure and gives new interpretation of the black hole mass as an enthalpy. In AdS space, there are
three kinds of non-rotating black holes, such as black brane, black hole and black hole with hyperbolic
spatial section. They share a universal form of Smarr relation [9].

On the other hand, these three sorts of black holes are dual to finite temperature conformal field
theories in flat space, spherical space and hyperbolic space, respectively, through AdS/CFT correspon-
dence. Nonvanishing curvature of space corrects the energy-momentum tensor of the dual field theory
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with Casimir contribution. Smarr relation in the bulk can be written down in terms of on-shell action
and boundary quantities shch as energy density, entropy, temperature, charge density and chemical
potential. From this relation one can notice that the gravity on-shell action is nothing but the grand
potential of the dual boundary system. By varying this relation and adopting on-shell condition, the
first law of the dual theory can be derived. Also, the pressure of the dual system can be read off from
this. we will provide summary of the results in the next section.

Physical interpretation of the thermodynamic volume depends on how the cosmological constant
changes physically. For the black holes with spherical and flat spatial sections, varying cosmological
constant corresponds to taking different large N limits because the cosmological constant depends on
N. This is a very nontrivial task which contains 1/N effect and extended AdS/CFT correspondence.
Usually AdS/CFT correspondence is defined for a fixed large N limit as a correspondence between
low energy effective theories of coincident N D branes. Thus varying N means adding D branes to
the original N D brane system. Also thermodynamic volume is a response from changing number of
D branes and it can be interpreted as a chemical potential of branes in various situations. We present
an explicit expression for the ABJM theory in section 3.

In addition there is another interesting interpretation of thermodynamics volume for black holes
with hyperbolic spatial section, so called, hyperbolic black holes. In this case, the entropy of the black
holes can be mapped to an entanglement entropy with ball shape entangling regions whose radius is
given by the cosmological constant. So physical meaning of varying N is changing the size of entan-
gling region. This generalizes the thermodynamics of entanglement entropy and we introduce new
quantity, ‘entanglement pressure’ to explain an additional term in the generalized thermodynamics.
We will show details in section 3.

2 Thermodynamics of Bulk and Boundary

In this section we summarize and compare thermodynamics of a gravitational system and correspond-
ing boundary theory. Let us start with a following gravity system.

S =
1

16πG

∫
dDx
√−g

(
R +

(D − 1)(D − 2)
L2 − 1

4
FMN FMN

)
, (1)

where F is a Maxwell field strength given by F = dA. This action admits an ansatz as follows:

ds2 = − f (r)dt2 + r2dΩ2
κ +

dr2

f (r)
, (2)

where the subscript κ of the spatial section Ωκ can be 1, 0 and −1 for spherical, flat and hyperbolic
spatial section, respectively. Then one can obtain the following charged black hole solution,

f (r) =
r2

L2 + κ −
16πm̃

(D − 2)rD−3 +
G

2(D−3)
D−2 q̃

2(D − 2)(D − 3)r2(D−3) (3)

A =
16G

1
D−2 µ − G

D−3
D−2

(D − 3)rD−3 q̃
 dt , (4)

where m̃ and q̃ are mass and charge density over Ωk.
Now, one can define thermodynamic variables in the bulk and construct the thermodynamics of

the gravitational system. First the Hawking temperature and the entropy are defined as follows:

TH =
1

4π
eA(rh) f ′(rh) , S =

1
4G

rD−2
h VolΩκ , (5)
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where m̃ and q̃ are mass and charge density over Ωk.
Now, one can define thermodynamic variables in the bulk and construct the thermodynamics of

the gravitational system. First the Hawking temperature and the entropy are defined as follows:

TH =
1

4π
eA(rh) f ′(rh) , S =

1
4G

rD−2
h VolΩκ , (5)

where rh denotes the horizon of the black holes. The bulk pressure is obtained by contribution of the
cosmological constant to the energy-momentum tensor.

PB =
(D − 1)(D − 2)

16πG
. (6)

Then the Smarr relation for this system can be derived by considering f (rh) = 0 as follows:

(D − 3)M = (D − 2)S TH − 2PBVth + (D − 3)µQ , (7)

where M and Q are the total mass and charge for Ωk. Here we defined a quantity Vth as

Vth =
rD−1

h

D − 1
VolΩκ . (8)

Also, one can obtain the first law of thermodynamics from variation of the Smarr relation (7). It can
be written in the following form:

dM = THdS + VthdPB + µdQ . (9)

From this, one can see that Vth is indeed playing a role of the thermodynamic volume and the mass M
can be identified with an enthalpy of the system.

Now, one can consider corresponding dual thermodynamics of the boundary system. Thermody-
namic variables of the dual conformal field theory can be obtained by holographic renormalization
[10–13]. The metric of the boundary system is easily read off from the asymptotic behavior of the
geometries. It is given by

ds2
b = g

b
µνdxµdxν = −dt2 + L2dΩ2

κ . (10)

Then the volume of the space is

Vb = LD−2VolΩκ , (11)

thus varying L correponds to varying the size of space in the dual field theory. Derivative of the on-
shell gravity action with respect to this boundary metric gives energy momentum tensor as follows:

〈T µν〉 = ε uµuν +
ε

D − 2

(
g
µν
b + uµuν

)
, (12)

where ε and uµ are energy density and a timelike normal vector of the boundary system. The energy
density is m̃ for even D. Otherwise, for odd D, it contains Casimir contributions as follows:

ε = m̃ +
D − 2

32
LD−3κ

D−1
2

( 1
2

D−1
2

)
. (13)

The Smarr relation (7) gives an expression of the euclidean on-sell action in terms of other thermody-
namic variables,

S on−shell TH

Vb
= ε − sTH − µρ , (14)

where ρ is the energy density of the boundary system and it can be obtained by 〈ρ〉 = δS on−shell

δµ
and s is

the entropy density of the boundary system.
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Also, the first law (9) can be written in terms of boundary quantities as follows:

dε = THds + µdρ − 1
D − 2

(ε − µρ)
Vb

dVb (15)

With extensive quantities, this becomes

dEb = THdS b + µdQb −
(

D − 3
D − 2

(ε − µρ) − sTH

)
dVb (16)

where Eb adnd Qb are total energy and total charge of the boundary system. Finally, we may conclude
that the pressure is

Pb =

(
D − 3
D − 2

(ε − µρ) − sTH

)
(17)

and the grand potential is given by the euclidean on-shell action,

W = Eb − S TH − µQb . (18)

In addition, there is a difference from the bulk thermodynamics. The energy of the boundary system
still plays a role of internal energy rather than enthalpy. This is confirmed by the first law. Lastly we
would like to point out there is an invariant quantity between bulk and boundary theories, which is
pressure times volume:

PBVth = PbVb . (19)

Therefore, the thermodynamic volum in the bulk is given by ratio of the pressures times the boundary
volume. The meaning of this relation is not clear so far. However, it must be an interesting relation
for the bulk-boundary duality.

3 Physical Interpretation and Discussion

In this final section we move on to physical interpretation of the extended thermodynamics. As we
explained in section 1. The thermodynamic volume is related to a kind of chemical potential to the
number of branes for black branes and black holes. In particular, we know dual field theories for some
cases exactly. D = 4 case is forN=4 super Yang-Mills theory and D = 3 case can describe the ABJM
theory. We consider the 4 dimensional case.

The radius of 4 dimensional AdS spacetime can be written in terms of parameters of the ABJM
theory as follows:

L =
lp

2
(25π2Nk)1/6 , (20)

where lp,N and k are the Planck length, the rank of gauge group and the Chern-Simons level of the
ABJM theory. Then the first law of the dual theory is given by

dEb = THdS + µdQ + µNdN , (21)

where µN is the chemical potential of M2 brane and it is related to thermodynamic volume. The
expression is

µN = −Pb

(
∂Vb

∂N

)
= −PBVth

(
∂ logVb

∂N

)
. (22)
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µN = −Pb
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∂Vb

∂N

)
= −PBVth

(
∂ logVb

∂N

)
. (22)

Now we discuss on the hyperbolic black hole case, i.e, black hole with hyperbolic spatial section.
The relevant background is

f (r) =
r2

L2 − 1 , (23)

which is given by setting m̃ = q̃ = 0. Then the black hole entropy corresponds to the entanglement
entropy with a ball shape entangling region [14]. The radius of the entangling region is given by
L. Thus varying L is nothing but changing the size of the region for trace in entanglement entropy
calculation. Thus the thermodynamic volume is related to a field theory quantity which is defined in
the following generalized first law of entanglement entropy S EE over a regionA.

δS EE = δ 〈HA〉 + PEEδA , (24)

Where HA is modular hamiltonian overA and PEE is a response of entanglement entropy to varying
A.

The extended black hole thermodynamics by varying cosmological constant has many applications
in the dual field theory. In this paper, we introduce several examples. More details and study would be
presented in our next paper [15]. As a future direction, we may consider the thermodynamic volume
in an inflation model or de Sitter space. In these cases, the thermodynamic volume is related to the
slow roll parameter of inflation models and it is interesting to see if the thermodynamic volume plays
a role of an effective volume describing dark matter [16] .
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