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Abstract. We investigate the angular distribution of scission neutrons taking account of
the effects of fission fragments. The time evolution of the wave function of the scission
neutron is obtained by integrating the time-dependent Schrodinger equation numerically.
The effects of the fission fragments are taken into account by means of the optical po-
tentials. The angular distribution is strongly modified by the presence of the fragments.
In the case of asymmetric fission, it is found that the heavy fragment has stronger ef-
fects. Dependence on the initial distribution and on the properties of fission fragments is
discussed. We also discuss on the treatment of the boundary to avoid artificial reflections.

1 Introduction

At the moment of scission, the neck that has connected the two fission fragments ruptures. This neck
rupture can be very quick because the number of nucleons involved in the neck region is relatively
small. After the scission, the neck disappears being absorbed by the fragments leaving some nucleons
behind in the neck region and these nucleons are observed as particle emission. The number of scis-
sion particles carries the information on the scission process. There have been attempts to estimate the
number of scission neutrons theoretically [1,2]. The results depend on the nuclear shape such as the
neck radius before scission. If we extract the reliable number of scission neutrons from experiments,
we can get information on the nuclear shape at the time of scission.

In measuring the scission neutrons experimentally, the information on their angular distribution is
essential. The emission of scission neutron is normally supposed to be isotropic in the rest frame of
the mother nucleus in the lowest order approximation. However, since they are emitted in the close
vicinity of the fission fragments, the final angular distribution of the scission neutron is modified by
the fragments through scattering and re-absorption. In the previous study, we proposed a framework
to calculate the angular distribution of scission neutrons by solving a time-dependent Schrödinger
equation [3]. It was shown that the angular distribution of the scission neutron is strongly modified
by the presence of the fragments, namely, the attractive nuclear potential enhances the yields around
0 and 180 degrees, while the absorptive potential diminishes them. We also investigated the angular
distribution of scission protons and discussed the effect of the Coulomb field of the fragments [4].
It was shown that the angular distribution of the scission proton is also strongly modified by the
fragments. The Coulomb field of the fragments tends to focus the yields around 90 degrees, while the
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attractive nuclear potential enhances the yields around 0 and 180 degrees. In this paper, we examine
the dependence of the angular distribution of scission neutrons on the initial distribution of neutron and
on the properties of fission fragments, such as deformation of the fragments. In the next section, the
formulation to calculate the angular distribution of the scission particles is revisited. In Sect. 3, results
are presented for the case of the fission of 236U for both symmetric and asymmetric divisions. Next,
we discuss on the treatment of the boundary to avoid artificial reflection. Finally, a summary is given.

2 Framework

We start with a time-dependent Schrödinger equation (TDSE),

i
∂ψ

∂t
= Hψ, H = − 1

2m
∇2 + U, � = 1, (1)

where ψ denotes the neutron wave function, H is the Hamiltonian, and U is the potential that rep-
resents the effect of the fission fragments. Assuming the axial symmetry, we solve the TDSE in
two-dimensional grid space (ρ, z). The time development is obtained with the use of the mid-point
integration,

ψ(t + ∆t) = ψ(t) − i∆t Hψ(t + ∆t/2). (2)

By decomposing ψ into the real and the imaginary part, ψ = P+ iQ, the numerical solution is obtained
using the leap-frog method [3]. The potential U has two centers and is parameterized in Woods-Saxon
form centered at the position of each fragment. For the case of spherical fragments, U is expressed as,

U(ρ, z) =
V0 + iW0

1 + exp
( √
ρ2+(z+B2)2−RF2

a

) + V0 + iW0

1 + exp
( √
ρ2+(z−B1)2−RF1

a

) , (3)

where Bi is the distance between the center of scission neutron distribution and the i-th fragment, a
is the diffuseness, and RFi is the radius of the potential of i-th fragment. The distance Bi is given as
Bi = ηRFi, where η is the elongation parameter which is to be deduced from the systematics of the
total kinetic energy.

We adopt a Gaussian wave packet for the initial wave function of the scission neutron, ψ(t =
0) = C exp(−(αρρ2 + αzz2))), where C is a normalization constant and α’s denotes the width of the
wave packet. We now set a sphere of radius R in the grid space and calculate the neutron flux on this
spherical surface,

j(r, t) =
1

2im
(ψ∇ψ ∗ −ψ ∗ ∇ψ) . (4)

We then calculate the number of outgoing scission particles per unit solid angle per unit time and
integrate it with time. The angular distribution is given by the number of particles per unit solid angle
that passed the surface up to time t,

dN(θ, t)
dΩ

=

∫ t

0

d2N(θ, t′)
dΩdt

dt′ =
∫ t

0
j(R, θ, t′) · n(R, θ)R2dt′, n = er. (5)

The energy density and the energy flow are defined respectively as

ε(r, t) =
�2

2m
∂ψ∗
∂r
· ∂ψ
∂r
+ U(r, t)ψ ∗ ψ , (6)
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The energy that is brought by scission neutrons to a certain angle θ is calculated in the same manner
as in Eq. (5),

dE(θ, t)
dΩ

=

∫ t

0
jε(R, θ, t′) · n(R, θ)R2dt′, n = er, (8)

and the average energy of scission neutron for each direction is given by

〈ε(θ)〉 = dE(θ, t)
dΩ

/
dN(θ, t)

dΩ
. (9)

3 Results and discussions

As an example, we consider the fission of 236U that corresponds to the neutron induced fission of
235U. From a systematic study of the average total kinetic energy (TKE) of the fragments, Zhao
et al. derived the elongation parameter h which is the ratio between the average distance between
the fragments to the contact distance r0(A1/3

1 + A1/3
2 ), where A1 and A2 are the mass numbers of the

fragments and r0 = 1.17 fm [5]. The average distance between the fragments is determined so that the
corresponding point charge Coulomb energy is equal to the average TKE. They obtained η = 1.53 for
the asymmetric fission in U region. In the calculation, we simply use the same elongation parameter
for Bi as Bi = ηr0A1/3

i . The distance between the grid points is typically 0.1 fm in both z- and ρ-
directions. The time step for the integration is typically ∆t = 0.02 fm/c. The radius R is set to 60 fm
and the integration is performed up to t = 5 × 10−21 s. In calculating the time development, we take
account of the motion of the fragments due to the Coulomb repulsion between the fragments. In
the following, V0 = −40 MeV and W0 = −1 MeV are used for the strength of the potential unless
otherwise is mentioned.

3.1 Dependence on the initial wave function

First, we investigate the dependence on the initial wave function for the symmetric fission. The initial
wave function is assumed to be of the form of ψ(t = 0) = C exp(−(αρρ2 + αzz2)). The initial average
kinetic energy of scission neutron is given as,

〈ε〉 = �
2

2m

(
2αρ + αz

)
. (10)

The left panel of Fig. 1 shows the angular distribution of scission neutrons for the isotropic initial
wave function (αρ = αz) with <ε> = 0.5, 1.0, 1.5, and 2.0 MeV. The yields along fission axis, 0 and
180 degrees, increase as <ε>, while the yield around 90 degrees is almost independent of <ε>.

In the right panel of Fig. 1, we show the results for the cases of deformed initial wave function.
The value of αρ is fixed and αz is given as αρ/αz = 1, 9/4, 4, 25/4. When we increase the deformation
of the initial wave function, we obtain less yields around 90 degrees, while the yields around 0 and
180 degrees do not change as much. As a whole, the effect of the attractive nuclear potential is to
increase the yeilds around 0 and 180 degrees.
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Figure 1. Angular distribution of scission neutron. Left panel: dependence on the width of the wave packet,
Right panel: dependence on the deformation of the wave packet.

3.2 Dependence on the motion and the deformation of the fragments

Next, we investigate the case of asymmetric fission. The mass number of the heavy fragment is
assumed to be A1 = 140. The left panel of Fig. 2 displays the dependence on the motion of the
fragments. Three cases are shown; the dashed line shows the result when the fragments are fixed
at the initial position, the solid line corresponds to the case that the fragments start from the same
position as the first case at rest then accelerated by the Coulomb repulsion, and the dotted-dash line
is the case with the pre-scission kinetic energy of 15 MeV. In the second and the third case, we keep
the TKE unchanged. Note that heavier fragment is on 0 degree and the lighter one is on 180 degrees.
As is seen in Fig. 2, contrary to the experimental observation of the angular distribution of prompt
neutrons, we observe more neutrons in the direction of heavier fragment. This indicates either that
there is a significant contribution of the post scission emission of neutrons from fission fragments or
that we need to employ more sophisticated initial condition of scission neutrons [2]. By comparing
the solid and the dashed lines, we see that the change of the yield is smaller on the heavier fragment
side than that on the light fragment side. The oscillation around 90 degrees is more enhanced for the
case of the fixed fragments. That means that the yield around 90 degrees is sensitive to the position of
the fragments. This tendency is confirmed when we compare the solid line with the dotted-dash line.

We have assumed spherical fragments so far. Now we examine how the angular distribution
changes when the fragments are deformed. We assume that the fragments are deformed axial-
symmetrically along the fission axis and the optical potential U(ρ, z) is calculated accordingly. The
surface of a fragment is expressed as,

R(θ) = Rδ(1 + δ cos θ) . (11)

where Rδ is determined to conserve the volume of the fragment. We show the results in the right panel
of Fig. 2 for several cases. It is seen that the angular distribution on the heavier fragment side is
sensitive to the deformation of heavier fragment and vice versa.

3.3 Angular distribution of the average energy

Before discussing the average energy of scission neutrons, we will briefly remark on the effects of
absorption by the fragments. The left panel of Fig. 3 shows the comparison of the angular distribution
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Figure 2. Angular distribution of scission neutron for asymmetric fission. Left panel: dependence on the motion
of the fragments, Right panel: dependence on the deformation of the fragments.

Figure 3. Left panel: comparison of the angular distribution of scission neutrons for the cases with and without
absorption. Right panel: angular distribution of average energy of scission neutrons for symmetric and asymmet-
ric fission.

calculated with (W0 = −1 MeV) and without (W0 = 0) the absorption. It is seen that the yields between
60 and 120 degrees do not change with the absorption, while the yields around 0 and 180 degrees are
reduced significantly by the absorption.

The average energy of emitted neutron is calculated according to Eqs. (6)–(9). The right panel
of Fig. 3 shows the angular distribution of the average energy for the symmetric and the asymmetric
division. No precision kinetic energy is included and the absorption is set to W0 = −1 MeV. It is seen
that the average energy of neutron is high compared with the average kinetic energy of the initial wave
function, <ε> = 1.5 MeV in this case. This is partly due to the motion of the fragments and is partly
due to the finite duration of the calculation. Qualitatively speaking, slow component stays inside of
the boundary for a long time, while the components with large kinetic energy arrive at the boundary
faster. It is seen that the yields around 0 and 180 degrees have relatively high kinetic energy due to
the attractioin of the fragments in both symmetric and asymmetric cases.

3.4 Treatment of boundaries

In order to avoid unrealistic reflections of the wave function at the border of the grid, there are
essentially two methods; one is to prepare a large calculation grid and put a week absorbing potential
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outside of the sphere of radius R, on which we calculate the outgoing flux, the other is to use a smaller
calculation grid and to use a proper artificial boundary condition to avoid the reflection. The former
method has been employed in our calculation so far. One drawback of this method is that we need
extra CPU time for the calculation outside of the physical region.

One example of the latter is a so-called “transparent boundary condition” (TBC) [6]. For the
case of one-dimensional problem, it assumes that the wave function can be approximated by a single
energy plane wave, i.e. ψ(x) ∝ eikx. Because of the second differential in the kinetic energy term
of the Hamiltonian, we need to extrapolate the wave function beyond the boundary. With TBC, the
extrapolation is done as,

ψ(xM + ∆x) =
ψ(xM)2

ψ(xM − ∆x)
(12)

where xM denotes the boundary point. When we denote f (x) = log(ψ(x)), Eq. (11) corresponds
to the linear approximation, f (x+∆x) = 2 f (x) − f (x − ∆x). We now propose to use the second-
order approximation, f (x + ∆x) = 3 f (x) − 3 f (x − ∆x) + f (x − 2∆x) to improve the accuracy of the
extrapolation. We call this new method “second-order TBC” and applied it to a one-dimensional
problem for free particle for which we know the exact solution. It was found that the error due
to the extrapolation was much smaller compared with that with the original TBC. We also applied
this method to the calculation of scission neutron. Though some fine tuning was necessary in the
application, we obtained essentially the same accuracy as the one with the imaginary potential method
but with less CPU time.

4 Summary

The effects of the scattering and re-absorption by the fission fragments on the angular distribution of
scission particles have been investigated in the framework of the time-dependent Schrödinger equa-
tion. The effects of the fragments are taken account in terms of the nuclear optical potentials. We
solve the time-dependent Schrödinger equation of the emitted neutron and the angular distribution is
calculated by counting the outgoing flux. It has been demonstrated that the attractive nuclear potential
enhances the yields around 0 and 180 degrees, while the absorptive potential diminishes them. In the
case of asymmetric fission, the heavy fragment which is larger in size causes stronger effect to the an-
gular distribution of scission neutrons. In order to elucidate the essential features of the effects of the
fragments, we have examined the angular distribution by changing the initial wave function. We have
also examined dependence on the position and the deformation of the fragments. The angular distri-
bution of the average energy of emitted neutrons has been discussed. Finally, we have proposed a new
boundary condition to minimize the reflection on artificial boundaries due to finiteness of the grid.
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