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Abstract—One of the main drawbacks of Cone Beam 

Computed Tomography (CBCT) is the contribution of the 
scattered photons due to the object and the detector. 
Scattered photons are deflected from their original path 
after their interaction with the object. This additional 
contribution of the scattered photons results in increased 
measured intensities, since the scattered intensity simply 
adds to the transmitted intensity. This effect is seen as an 
overestimation in the measured intensity thus 
corresponding to an underestimation of absorption. This 
results in artifacts like cupping, shading, streaks etc. on 
the reconstructed images. Moreover, the scattered 
radiation provides a bias for the quantitative tomography 
reconstruction (for example atomic number and volumic 
mass measurement with dual-energy technique). The effect 
can be significant and difficult in the range of MeV energy 
using large objects due to higher Scatter to Primary Ratio 
(SPR). Additionally, the incident high energy photons 
which are scattered by the Compton effect are more 
forward directed and hence more likely to reach the 
detector. Moreover, for MeV energy range, the 
contribution of the photons produced by pair production 
and Bremsstrahlung process also becomes important. We 
propose an evaluation of a scattering correction technique 
based on the method named Scatter Kernel Superposition 
(SKS). The algorithm uses a continuously thickness-
adapted kernels method. The analytical parameterizations 
of the scatter kernels are derived in terms of material 
thickness, to form continuously thickness-adapted kernel 
maps in order to correct the projections. This approach 
has proved to be efficient in producing better sampling of 
the kernels with respect to the object thickness. This 
technique offers applicability over a wide range of imaging 
conditions and gives users an additional advantage. 
Moreover, since no extra hardware is required by this 
approach, it forms a major advantage especially in those 
cases where experimental complexities must be avoided. 
This approach has been previously tested successfully in 
the energy range of 100 keV – 6 MeV. In this paper, the 
kernels are simulated using MCNP in order to take into 
account both photons and electronic processes in 
scattering radiation contribution.  We present scatter
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correction results on a large object scanned with a 9 MeV 
linear accelerator.

Index Terms— Computed tomography, scatter correction,
Scatter Kernel Superposition

I. INTRODUCTION

ne of the main drawbacks of MeV energy range CBCT is
the scattering of photons inside the object and the
detector. Scattered photons intensity is simply added to 

the primary photons intensity. This effect is seen in the back 
projection reconstruction algorithms as overestimated 
reconstructed linear attenuation thus corresponding to an 
underestimation of absorption. As a result, scatter artifacts can 
be seen on the reconstruction images like cupping, shading, 
streaks etc. In case of MeV energy range, forward Compton 
scattering of photons increases and hence there is a high 
probability of scattered photons reaching the detector. In 
addition, these scattered photons are more energetic and 
therefore more likely to escape from the object. Moreover, 
when the incident X-ray energy range is increased, the number 
of photons generated by the bremsstrahlung process also 
increases. Finally, for the X-ray photons with energies above 
1.022 MeV, pair production produces additional 511 keV 
photons that can contribute to an overall increase in the scatter 
contribution. Many scatter correction methods for MeV source 
are listed in the literature. For example, Maltz et al. [1] have 
used beam stop arrays for scatter correction. Such methods 
increase the X-ray exposure due to more than one scan per 
projection and extended scanning time. The classical 
convolution approaches based on scatter kernel superposition 
(SKS) method [2] [3] [4] use deconvolution method to 
calculate the scatter intensity and are based on a discrete set of 
thickness-dependent kernels. In these techniques, for a range 
of thickness only one kernel is used. These methods give 
satisfactory results in many applications. However, these 
methods are not very efficient in higher energy range due to 
higher SPR. In this article, we have applied scatter correction 
by continuously thickness adapted Scatter Kernel 
Superposition (SKS) method [5] on a data produced by 9 MeV 
X-ray photon beam generated from a linear accelerator. 

II.METHOD AND MATERIALS

A. Scatter correction using a continuous SKS approach

In the SKS scatter correction approach based on [5], scatter 
signal is modeled as the sum of the scatter contributions from 
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a group of pencil beams passing through the object and the 
detector. The total scatter signal S(m, n) with m and n as the 
pixel position on the detector, can then be modeled as:

𝑆𝑆(𝑚𝑚, 𝑛𝑛) = ∑ ∑ 𝑃𝑃(𝑘𝑘, 𝑙𝑙)𝐾𝐾𝑇𝑇(𝑘𝑘,𝑙𝑙)(𝑚𝑚 − 𝑘𝑘, 𝑛𝑛 − 𝑙𝑙)𝑙𝑙𝑘𝑘 (1)

Where, P is the primary signal contributed by the photons 
passing through the object without any attenuation. KT is the
transmission (T) dependent kernel, with amplitude equal to the 
ratio of the scattered signal at the current pixel to the primary 
signal P. T is computed with Beer Lambert law:

𝑇𝑇(𝑘𝑘, 𝑙𝑙) =
𝑃𝑃(𝑘𝑘, 𝑙𝑙)
𝑂𝑂(𝑘𝑘, 𝑙𝑙)  (2) 

Where, O is the full beam intensity (signal without the 
sample). T is dependent on the attenuation thickness with 
respect to the classical Beer Lambert law. KT is non-linearly 
fitted by an equation formed by a circularly symmetric 
Lorentzian function describing the shape of the kernel:

𝐾𝐾𝑇𝑇(𝑚𝑚 − 𝑘𝑘, 𝑛𝑛 − 𝑙𝑙) = 𝐴𝐴
1 + 𝐵𝐵 ((𝑚𝑚 − 𝑘𝑘)2 + (𝑛𝑛 − 𝑙𝑙)2)  (3)

Where parameters A, B are function of transmission T.

B.Kernel generation with MNCP6 

In order to generate the kernels, we performed Monte Carlo
(MC) simulations with MCNP6 [6]. Fig. 1 presents MC 
simulation setup and an example of the 2D kernel. Simulated 
geometry was kept same as the acquisition set up. Pencil
beam source corresponding to a 9 MeV bremsstrahlung 
spectrum was impinged on slabs of the same material as the 
object under study. Afterwards, a discrete set of point spread 
2D kernels was obtained on the detector. 

Eventually, for each kernel, we extracted a radial line 
profile from the 2D generated kernel image. Then, 
equation 3 was fit on these 1D kernels using non-linear 
least square fitting (see Fig. 2 and 3). The values for 
parameters A and B were calculated for these discrete 
sets of kernels. Thereupon, in order to obtain the 
continuous kernel, we analytically computed the 
expression for the kernels parameters A and B in terms 
of the transmission of the object [5]. For this case, we 
fitted a curve with respect to the transmission using a 
classical non linear least square fitting technique for 
each parameter. Fig. 3 presents the curve fitted on the 

discrete values of parameter A versus transmission.

In a previous work [5], the SKS method has been tested with a 
2 and 4 Gaussian-model. Fig.2 shows that with our 9 MeV 
spectrum the best is obtained with a Lorentzian model. Table 
II shows a comparison between root mean square error 
(RMSE) between simulated data and Lorentzian, 2 Gaussian 
and 4 Gaussian-model fit versus the transmission of the 
bitumen slab. Lorentzian model gives a better fit along all the 
7 kernels.  With a high energy spectrum (9 MeV), the 
Compton effect is less preponderant as compared to pair 
production effect and Bremsstrahlung effect of the secondary 

Fig. 2. Simulated and fitted kernel for bitumen slab with a transmission of 
0.8.

Fig. 3. Curve fitted on the discrete values of parameter A versus 
transmission

Fig. 1.  a) MC kernel simulation setup using pencil beam b) generated 2D 
kernel 
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electrons. This could explain the reason of the best fit obtained 
with Lorentzian model instead of 2-4 Gaussian model.

C. Iterative Scatter Correction

We applied an iterative scatter correction scheme described 
in Fig. 4. It consists of 5 steps:

1) The experimental projection was initialized as the first
estimate of the primary P.

2) The equivalent transmission was computed for each pixel
using eq. (2).

3) The convolution was performed by calculating the
suitable kernels for the respective transmission using eq. (3)

4) For each pixel, scatter contribution is estimated using eq.
(1).

5) The primary P for iteration i+1 was updated using eq. (4)

𝑃𝑃𝑖𝑖+1(𝑚𝑚, 𝑛𝑛) = 𝑃𝑃0(𝑚𝑚, 𝑛𝑛) × 𝑃𝑃𝑖𝑖(𝑚𝑚, 𝑛𝑛)
𝑃𝑃𝑖𝑖(𝑚𝑚, 𝑛𝑛) +  𝑆𝑆𝑖𝑖(𝑚𝑚, 𝑛𝑛)    (4)

Steps 1 to 5 are repeated until convergence is achieved.

D.Acquisition set up

The acquisitions were performed on a Mini-Linatron 
VARIAN linear accelerator 9 MeV filtered by 20 mm steel.
The source to detector distance was 3.5 m and the source to 
object distance was 2.85 m. The acquisitions were performed 
on a cylinder made of bitumen. The detector used was a
GADOX scintillator + sCMOS detector. Each of the 1200 
projections over 360° has a size of 80 x 60 cm2 with a pixel 
size of 334 µm (see Fig. 5).

III. CONCLUSIONS

Scatter kernel were simulated accurately with MCNP6 to take 
into account both photonic and electronic processes in the 
considered energy range. A comparison study between a two 
Gaussian and a Lorentzian-model on scatter kernel fit shows 

best results a single Lorentzian equation. This could be 
explained by less preponderant influence of Compton 
scattering and dominant contribution of pair production and 
Bremsstrahlung effect. In the perspective, we will validate 
this on the real data.
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Fig. 5. 2D scintillator detector. The scintillator screen is imaged by a low 
noise camera through a 45° tilted mirror. The screen size is 80 x 60 cm2.

TABLE I
ROOT-MEAN-SQUARE ERROR (RMSE) BETWEEN THE SIMULATED KERNEL 
DATA AND LORENTZIAN, 2 GAUSSIAN AND 4 GAUSSIAN-MODEL VERSUS 

TRANSMISSION

TRANSMISSION LORENTZIAN 2 GAUSSIAN 4 GAUSSIAN
1 4.06E-06 4.92E-06 4.79E-06

0.8 5.23E-06 6.31E-06 5.94E-06
0.5 5.48E-06 8.65E-06 9.10E-06
0.2 5.31E-06 1.14E-05 1.10E-05
0.1 5.17E-06 1.23E-05 1.19E-05

0.05 2.79E-06 3.78E-06 3.70E-06
0.01 2.64E-06 4.28E-06 4.14E-06

theory uncorrected corrected

Magnesium 0.053 0.043 0.047

Aluminium 0.081 0.066 0.072

Water 0.032 0.028 0.033

Silicon 0.071 0.061 0.066

Fig. 4. Scatter correction synopsis
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a group of pencil beams passing through the object and the 
detector. The total scatter signal S(m, n) with m and n as the 
pixel position on the detector, can then be modeled as:
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Where, P is the primary signal contributed by the photons 
passing through the object without any attenuation. KT is the
transmission (T) dependent kernel, with amplitude equal to the 
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Where, O is the full beam intensity (signal without the 
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respect to the classical Beer Lambert law. KT is non-linearly 
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1 + 𝐵𝐵 ((𝑚𝑚 − 𝑘𝑘)2 + (𝑛𝑛 − 𝑙𝑙)2)  (3)

Where parameters A, B are function of transmission T.

B.Kernel generation with MNCP6 

In order to generate the kernels, we performed Monte Carlo
(MC) simulations with MCNP6 [6]. Fig. 1 presents MC 
simulation setup and an example of the 2D kernel. Simulated 
geometry was kept same as the acquisition set up. Pencil
beam source corresponding to a 9 MeV bremsstrahlung 
spectrum was impinged on slabs of the same material as the 
object under study. Afterwards, a discrete set of point spread 
2D kernels was obtained on the detector. 

Eventually, for each kernel, we extracted a radial line 
profile from the 2D generated kernel image. Then, 
equation 3 was fit on these 1D kernels using non-linear 
least square fitting (see Fig. 2 and 3). The values for 
parameters A and B were calculated for these discrete 
sets of kernels. Thereupon, in order to obtain the 
continuous kernel, we analytically computed the 
expression for the kernels parameters A and B in terms 
of the transmission of the object [5]. For this case, we 
fitted a curve with respect to the transmission using a 
classical non linear least square fitting technique for 
each parameter. Fig. 3 presents the curve fitted on the 

discrete values of parameter A versus transmission.
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2 and 4 Gaussian-model. Fig.2 shows that with our 9 MeV 
spectrum the best is obtained with a Lorentzian model. Table 
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(RMSE) between simulated data and Lorentzian, 2 Gaussian 
and 4 Gaussian-model fit versus the transmission of the 
bitumen slab. Lorentzian model gives a better fit along all the 
7 kernels.  With a high energy spectrum (9 MeV), the 
Compton effect is less preponderant as compared to pair 
production effect and Bremsstrahlung effect of the secondary 
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electrons. This could explain the reason of the best fit obtained 
with Lorentzian model instead of 2-4 Gaussian model.

C. Iterative Scatter Correction

We applied an iterative scatter correction scheme described 
in Fig. 4. It consists of 5 steps:

1) The experimental projection was initialized as the first
estimate of the primary P.

2) The equivalent transmission was computed for each pixel
using eq. (2).

3) The convolution was performed by calculating the
suitable kernels for the respective transmission using eq. (3)

4) For each pixel, scatter contribution is estimated using eq.
(1).

5) The primary P for iteration i+1 was updated using eq. (4)

𝑃𝑃𝑖𝑖+1(𝑚𝑚, 𝑛𝑛) = 𝑃𝑃0(𝑚𝑚, 𝑛𝑛) × 𝑃𝑃𝑖𝑖(𝑚𝑚, 𝑛𝑛)
𝑃𝑃𝑖𝑖(𝑚𝑚, 𝑛𝑛) +  𝑆𝑆𝑖𝑖(𝑚𝑚, 𝑛𝑛)    (4)

Steps 1 to 5 are repeated until convergence is achieved.

D.Acquisition set up

The acquisitions were performed on a Mini-Linatron 
VARIAN linear accelerator 9 MeV filtered by 20 mm steel.
The source to detector distance was 3.5 m and the source to 
object distance was 2.85 m. The acquisitions were performed 
on a cylinder made of bitumen. The detector used was a
GADOX scintillator + sCMOS detector. Each of the 1200 
projections over 360° has a size of 80 x 60 cm2 with a pixel 
size of 334 µm (see Fig. 5).

III. CONCLUSIONS

Scatter kernel were simulated accurately with MCNP6 to take 
into account both photonic and electronic processes in the 
considered energy range. A comparison study between a two 
Gaussian and a Lorentzian-model on scatter kernel fit shows 

best results a single Lorentzian equation. This could be 
explained by less preponderant influence of Compton 
scattering and dominant contribution of pair production and 
Bremsstrahlung effect. In the perspective, we will validate 
this on the real data.
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