
Application of SLURM, BOINC, and GlusterFS as Software
System for Sustainable Modeling and Data Analytics

Vladislav V. Kashansky1,� and Igor L. Kaftannikov1,��

1School of Electrical Engineering and Computer Science, South Ural State University, Russia

Abstract.
Modern numerical modeling experiments and data analytics problems in various fields
of science and technology reveal a wide variety of serious requirements for distributed
computing systems. Many scientific computing projects sometimes exceed the available
resource pool limits, requiring extra scalability and sustainability. In this paper we share
the experience and findings of our own on combining the power of SLURM, BOINC and
GlusterFS as software system for scientific computing. Especially, we suggest a complete
architecture and highlight important aspects of systems integration.

1 Introduction

Distributed environments have become very influential in the contemporary data processing and an-
alytics. During several decades, we had been observing architecture changes emerging to support
computation trends of various forms. Among them, there were hardware-defined platforms, SSI-based
systems [1] and clustered multi-node solutions, orchestrated by different batch schedulers. Contempo-
rary computing architectures [2] involve clustering approach, managing computing processes among
the nodes of a large distributed computing platform. Many papers have been written about the general
nature of the distributed computing. In this paper, we are going to discuss and focus on more “local”
and application-specific tasks.

The problem of infrastructure deployment arose during 2015–2016, when we decided to process
medium-sized data sets and perform corresponding computations for several projects led by Dr. I.L.
Kaftannikov. At early stages, we were using volunteer computing resources managed by the BOINC
system. The more data we wanted to process, the more inner resources we had to involve. The
problem is that with the growth of the project, we had to redefine the local infrastructure, making it
more reliable and stable. We also had some computational jobs, which required additional control and
it was no longer possible to use it in the context of BOINC, as we required lower latencies and higher
degree of security. At the same time, we wanted to save the existing approach, allowing volunteers to
integrate their computational resource base.

�e-mail: vladislav.kash@gmail.com
��e-mail: kil7491@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 173, 05010 (2018) https://doi.org/10.1051/epjconf/201817305010
Mathematical Modeling and Computational Physics 2017



2 Early Stages Architecture. BOINC System

As we stated above, we decided to use the BOINC system as initial solution. It is a free software
platform [3] developed by the Berkeley University, implementing a volunteer public-resource model
of distributed computations. BOINC allowed us to involve different types of computing powers,
connecting many individual computers to a common computational network. Owners of physical or
virtual computing resources were able to join us publicly via the BOINC client program and to help
by contributing some resources.

Figure 1. Architecture of the BOINC project. The platform is centralized and includes server and user-side parts.
User-side part consists of a client and a graphical program – BOINC Manager. The manager brings the GUI for
controlling of one or many BOINC clients. Proper details of BOINC project can be found in [3], improvements
in [4]. The most recent changes and documentation can be obtained from the Github repository and the official
website.

Many popular BOINC projects [3] demonstrate significant computational performance, but with
some strict limitations and only over a certain class of jobs. This of course allows scientific groups
to carry out resource-intensive calculations without the use of expensive hardware. But with this
approach we faced two major architectural problems:

1. The architecture of data storage is undefined as the BOINC system operates at a higher layer of
data abstraction.

2. The scheduling model within BOINC system is inconsistent with the local jobs distribution,
which asks for a fast acting system with low transition rates.

Based on Refs. [5–7] we decided to use the SLURM as a local batch scheduler and GlusterFS as
a distributed file system for storing experimental data sets.

2

EPJ Web of Conferences 173, 05010 (2018) https://doi.org/10.1051/epjconf/201817305010
Mathematical Modeling and Computational Physics 2017



2 Early Stages Architecture. BOINC System

As we stated above, we decided to use the BOINC system as initial solution. It is a free software
platform [3] developed by the Berkeley University, implementing a volunteer public-resource model
of distributed computations. BOINC allowed us to involve different types of computing powers,
connecting many individual computers to a common computational network. Owners of physical or
virtual computing resources were able to join us publicly via the BOINC client program and to help
by contributing some resources.

Figure 1. Architecture of the BOINC project. The platform is centralized and includes server and user-side parts.
User-side part consists of a client and a graphical program – BOINC Manager. The manager brings the GUI for
controlling of one or many BOINC clients. Proper details of BOINC project can be found in [3], improvements
in [4]. The most recent changes and documentation can be obtained from the Github repository and the official
website.

Many popular BOINC projects [3] demonstrate significant computational performance, but with
some strict limitations and only over a certain class of jobs. This of course allows scientific groups
to carry out resource-intensive calculations without the use of expensive hardware. But with this
approach we faced two major architectural problems:

1. The architecture of data storage is undefined as the BOINC system operates at a higher layer of
data abstraction.

2. The scheduling model within BOINC system is inconsistent with the local jobs distribution,
which asks for a fast acting system with low transition rates.

Based on Refs. [5–7] we decided to use the SLURM as a local batch scheduler and GlusterFS as
a distributed file system for storing experimental data sets.

3 Redefined Architecture. GlusterFS and SLURM

GlusterFS is a distributed, parallel, linearly scalable, failure-tolerant file system. We used it in the
context of TCP/IP networking to export data “bricks” from different servers, forming a single parallel
distributed data space. GlusterFS operates in user space, based on FUSE technology and works on
the top of the existing file systems, so we didn’t have to face the kernel support problem. Unlike other
distributed file systems, such as Lustre and Ceph [5], GlusterFS does not require a separate server for
storing metadata1, providing a great degree of flexibility and scalability. By bringing GlusterFS to our
BOINC stack we changed the storage mechanisms, allowing storing our data in a more efficient way.

Figure 2. Diagram of the new architecture. The whole
solution runs on CentOS 6.8. BOINC and SLURM form
computational core. Custom meta-scheduler controls the
job distribution process. It classifies jobs and sends them
into the correct queue according to the specific scientific
workflow. GlusterFS provides extensible single parallel
distributed data space. OpenVPN forms a secure overlay
network for communication of the inner services. We used
it to connect several storage nodes that weren’t accessible
directly via IPv4 address. Administrators and users interact
with the system via SSH commands and GUI.

The other valuable part of our new architecture is SLURM. The developers describe it as schedul-
ing system for large and small Linux clusters. It requires no kernel modifications for its operation and
is relatively self-contained [7]. However, the integration with SLURM required jobs classification
which was done within the following scheme:

1. Jobs with low data exchange intensity, possibility of execution pausing and reassignment2 are
running on the volunteer resources.

2. Jobs with intensive data exchange or strict deadlines are running on the local cluster and sched-
uled via SLURM.

After performing the integration depicted in figure 2, SLURM filled an important gap in our
architecture, providing the ability for starting, executing, and monitoring jobs on the set of locally
allocated nodes. Now, when a user registers the specific job in system’s workflow, meta-scheduler
can run it locally, or assign it to any possible volunteer’s computing resource, depending on the set of
preferences. The distribution scheme [8–10] as well as whole infrastructure tuning, monitoring [11]
and maintenance can turn to really complex solution. This is beyond the scope of this work, but we
suggest papers and books mentioned in our references for interested readers.

1GlusterFS uses Elastic Hashing Algorithm (EHA).
2Volunteers are usually able to pause or even cancel assigned jobs, making execution time unpredictable.

3

EPJ Web of Conferences 173, 05010 (2018) https://doi.org/10.1051/epjconf/201817305010
Mathematical Modeling and Computational Physics 2017



4 Conclusion
The use of Distributed File Systems and Batch Schedulers is a common practice for clusters, data-
centers, and supercomputers. In this paper, we tried to highlight a radical infrastructure redefinition,
joining high-latency loosely-coupled volunteer public resources with local high-performance cluster.
The use of SLURM, BOINC and GlusterFS as a platform for our computations allowed us:

1. To get a horizontally scalable computing system with minimal costs for organization and sub-
sequent maintenance. We used the available local and volunteer computing resources and spent
around 1200 man-hours on planning and development.

2. To solve the resource idleness problem. We connected 20 Intel Core I7-4770 2x4096DDR3
SATA 1TB via BOINC and 10 Intel Xeon-X5680 1x4096DDR3 SAS 1TB nodes via SLURM.

3. To socialize research of the department, allowing outside participants offer their own resources.
Volunteers donated more than 200 heterogeneous nodes, including several server farms.

4. To process wider spectrum of jobs due to combining local high-performance cluster with
BOINC system.

5. To automate functions related to the jobs distribution, results aggregation, and reporting data
creation via a meta-scheduler and a set of custom scripts.

References
[1] L. Renaud, P. Gallard, G. Vallée, Ch. Morin, and B. Boissinot, IEEE International Symposium

on Cluster Computing and the Grid (CCGrid 2005) 2 (Cardiff, Wales, UK, 2005) pp. 1016–1023
[2] S. H. Fuller and L. I. Millett, The Future of Computing Performance: Game Over or Next Level?

(National Academy Press, Washington DC USA, 2011)
[3] D. P. Anderson, Fifth IEEE/ACM International Workshop on Grid Computing (Pittsburgh PA

USA, 2004) pp. 4–10
[4] V. V. Kashansky and I. L. Kaftannikov, Selected Papers of the 7th International Conference

Distributed Computing and Grid-technologies in Science and Education (Dubna, Russia, 2016)
pp. 284–288

[5] B. Depardon, G. Le Mahec, and C. Séguin, Analysis of Six Distributed File Systems (Research
Report, The open archive HAL, 2013)

[6] A. Davies and A. Orsaria, Linux Journal 2013 (235), 72–82 (2013)
[7] A. B. Yoo, A. J. Morris, and M. Grondona, Job Scheduling Strategies for Parallel Processing

(Springer, Berlin, Heidelberg, 2003) pp. 44–60
[8] V. Berten, J. Goossens, and E. Jeannot, IEEE Transactions on Parallel and Distributed Systems

17 (2), 275–278 (2006)
[9] N. A. Balashov, A. V. Baranov, I. S. Kadochnikov, V. V. Korenkov, N. A. Kutovskiy,

A. V. Nechaevskiy, and I. S. Pelevanyuk, Selected Papers of the 7th International Conference
Distributed Computing and Grid-technologies in Science and Education (Dubna, Russia, 2016)
pp. 114–118

[10] M. Combarro, A. Tchernykh, D. Kliazovich, A. Drozdov, and G. Radchenko, 2016 International
Conference on Engineering and Telecommunication (EnT) (Moscow, Russia, 2016) pp. 29–33

[11] I. S. Kadochnikov and I. S. Pelevanyuk, Selected Papers of the 7th International Conference
Distributed Computing and Grid-technologies in Science and Education (Dubna, Russia, 2016)
pp. 275–278

4

EPJ Web of Conferences 173, 05010 (2018) https://doi.org/10.1051/epjconf/201817305010
Mathematical Modeling and Computational Physics 2017


