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Abstract. Using a model in the Gross-Neveu Ising universality class, we show how the
fermion bag idea can be applied to develop algorithms to Hamiltonian lattice field theo-
ries. We argue that fermion world lines suggest an alternative method to the traditional
techniques for calculating ratios of determinants in a stable manner. We show the power
behind these ideas by extracting the physics of the model on large lattices.

1 Introduction

Traditionally lattice field theories have been studied by the lattice community using the Lagrangian
path integral approach. However, the Hamiltonian formalism does offer some compelling reasons for
its application. The first reason has to do with additional symmetries that can be found in Hamiltonian
theories and may be relevant to phase transitions. As an example theory, the spectrum of Dirac
fermions can be obtained through the following Hamiltonian,

H0 = −t
∑
〈xy〉

(
c†x,σcy,σ + c†y,σcx,σ

)
, (1)

when placed on a honeycomb lattice. Here 〈x, y〉 denotes nearest neighbor sites, and σ is a flavor
index.

Now specifically taking σ = {↑, ↓}, and H = H0 + Hint with Hint as the Hubbard interaction,

Hint = U
∑
σ

(
ni,↑ − 1/2

) (
ni,↓ − 1/2

)
, (2)

the model has an S U(2) symmetry that is broken at a critical coupling U = Uc when the fermions
transition from a massless Dirac fermion phase to an antiferromagnetic phase. Its critical behavior
belongs to the Gross-Neveu Heisenberg universality class, corresponding to the Heisenberg SU(2)
symmetry broken in the effective continuous Gross-Neveu theory.[1]

However, it is not clear how to reach this same universality class using a four-fermion Lagrangian
lattice theory. When staggered fermions are combined with a four-fermion term, as in [2], the same
symmetry is not broken at the critical coupling and the universality class is different from that of the
Hubbard model, as evidenced by different critical exponents in the calculation.
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Another related reason to use the Hamiltonian formalism is that sometimes a Hamiltonian is sign-
problem-free, but the proposed Lagrangian path integral analog is not. For the following Hamiltonian
model,

H =
∑
x,d

−ηx,dt
(
c†xcx+d̂ + c†

x+d̂
cx

)
+ V
∑
x,d

(nx − 1/2)
(
nx+d̂ − 1/2

)
, (3)

where x is a spatial lattice site, d̂ labels the directions such that x, d labels a unique nearest neighbor
bond, and ηxy is defined as ηx,1 = 1, ηx,2 = (−1)x1 , the bilinear terms in the Hamiltonian describe
one flavor of four-component Dirac fermions at low energy. We can get one-flavor of massless Dirac
fermions using reduced staggered fermions in the Lagrangian approach, but the interaction term will
cause a sign problem.

On the other hand, the Hamiltonian version does not have a sign problem, as seen in [3, 4]. This
model exhibits a second-order phase transition from massless fermions to a massive charge-density-
wave (CDW) ordered phase, with a broken Z2 symmetry. This puts it in the Gross-Neveu Ising
universality class.

The model in (3) will be our focus in the demonstration of a new continuous-time Hamiltonian
Quantum Monte Carlo algorithm, which we call the Hamiltonian fermion bag algorithm. Since the
solution was found, multiple calculations have been done to determine the critical exponents for the
model (3), but there have been discrepancies between them, as summarized in Table 1. (Some of these
calculations are actually for the model (3) on a honeycomb lattice with ηx,d = 1, which has the same
critical behavior.) While the continuous time algorithms seem to have produced η-values of around
.3, the discrete time MQMC algorithm is significantly different with an η value of .45. One might be
tempted to assume the difference was due to discrete versus continuous time, but the discrete MQMC
algorithm also used larger lattices than did the three continuous time results. In our application of the

Critical Exponents from Quantum Monte Carlo
Past Work ν η Critical Coupling (V/t)c Largest lattice (sites)

CT-INT (GS) [5, 6] .80(3) .302(7) 1.304 225
MQMC (GS) [7] .77(3) .45(2) 1.296 576

CT-INT (Finite-T) [8] .74(4) .275(25) - 484

Table 1. Summary of earlier QMC results.

fermion bag algorithm, we manage to go to even larger lattices (our largest lattice size used has 2304
lattice sites) than the other calculations and find an η value that is larger (.54(6)) than that of the other
lattice calculations. We conclude that larger lattices are necessary to get the critical behavior of model
(3), and demonstrate that we have a new algorithm capable of doing calculations at larger lattices than
before. Our calculations for lattices with 2304 lattice sites are on par with the largest lattices ever
used for these spatially two-dimensional Hamiltonian models (2592 sites have been reached for the
Hubbard model [1, 9]), and additionally we show stable behavior for the algorithm at lattices of 4096
sites.

2 Fermion Bag Method
2.1 Defining the Fermion Bags

A review of the application of fermion bags to Lattice Field Theories can be found in [10]. A key
idea is to expand out the exponentiated fermionic terms in the path integral sum, and for each term
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to divide the lattice space into smaller groups of sites, known as fermion bags, that correspond to the
configuration.

For example, an exponentiated fermion-interaction term can be expanded as

eU
∑

x,y ψ̄xψxψ̄yψy =
∑

{nxy}

∏
x,y

(
Uψ̄xψxψ̄yψy

)nxy
(4)

where ψ̄x and ψx are Grassmann fields, and
{
nxy

}
represents a specific configuration of nxy = ±1

values. In this way there would be no more fermion interaction terms in the exponent.
The fermion bags could then be defined for each term in the expansion. For example, suppose we

had a term in the expansion for some model that was of the form [10]

I =
∫ [

dψ̄dψ
]

e−ψ̄Mψ (−U1ψ̄x1ψx1

) (−U2ψ̄x2ψx2

) (−U3ψ̄x3ψx4 ψ̄x4ψx3

)
. (5)

For this particular term there would be four groups of sites that could be treated independently: (x1),
(x2), (x3, x4), and all the remaining sites. Grassmann integration could be performed over each of the
four groups independently. The fermion bag idea has two main potential advantages: 1. sometimes
sign problems in these alternative expansions are solved, and 2. these groupings of fermions into bags
can be helpful in terms of allowing for fast algorithmic updates [11].

We now turn our attention back to the Hamiltonian formalism, and develop a Hamiltonian fermion
bag algorithm based on similar principles. We assume a Hamiltonian that may be written in as a sum
of terms of the following form

Hx,d = −ω〈x,d〉 e2α〈x,d〉
∑N f

a=1

(
ca

x
†ca

x+d̂
+ca

x+d̂
†ca

x

)
, (6)

where x is a spatial lattice site, and d̂ labels the directions such that x, d labels a unique nearest
neighbor bond. The operators ca

x
† and ca

x are fermionic creation and annihilation operators at the site x
with a flavor a = 1, 2..,Nf . The couplings of the model are defined through the real constants δ〈x,d〉 > 0
and α〈x,d〉. To get model (3) from this model, up to a constant, we can set ω〈x,d〉 = t2/(V(1 − (V/2t)2)),
and α〈x,d〉 = αηx,d where cosh 2α = (1 + (V/2t)2)/(1 − (V/2t)2), and sinh 2α = (V/t)/(1 − (V/2t)2)
[12]. Terms of the form (6) contain two key properties that are essential to this algorithm. First,
they are local, since each only pertains to two site bond. Second, they are exponentiated fermionic
bilinears, which will be important for the application of the Blankenbecler-Scalapino-Sugar (BSS)
formula, given later on.

Assuming that H =
∑

s,d Hx,d we use an expansion similar to the Stochastic Series Expansion
(SSE). Here the partition function is expanded as

Z = Tr
(
e−βH
)
=
∑

k,[x,d]

∫
[dt] (−1)k Tr

(
Hxkdk ...Hx2d2 Hx1d1

)
, (7)

where there are k insertions of the bond Hamiltonian Hx,d inside the trace at times t1 ≤ t2 ≤ ... ≤ tk.
The symbol [dt] represents the k time-ordered integrals and [x, d] = {x1, d1, x2, d2, ...xk, dk} represents
the configuration of bonds at different times. Since a configuration of bonds also requires the informa-
tion of the times where the bonds are inserted we label the configuration as [x, d, t]. A configuration
of bonds can be represented pictorially, and we do so in the left image of Figure 1. Each bond rep-
resents the operator Hx,d that is present inside the trace in (7). The horizontal axis labels the sites,
and the vertical axis is imaginary time (inverse temperature). Now we define the concept of fermion
bags in this Hamiltonian context. We can think of Hx,d as creating quantum entanglement between
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Figure 1. Images to illustrate the fermion bag concept. Left: One bond configuration in the expansion (7).
Middle: The fermion bags for this same configuration where all of β is one timeslice. Right: The separation
of the configuration into timeslices, and subsequent splitting into additional fermion bags. An update block is
shaded gray, and definitions for MB and MT are also given.

the fermions at x and x + d̂. Thus, all spatial sites connected by bonds to each other at various times
become entangled with each other. Such a group of entangled sites can be defined as a fermion bag.
Returning to Figure 1, the middle image shows the same configuration as the left image, but with
the fermion bags highlighted. There are four fermion bags in the figure: three with three sites each,
and one with a single site since no bonds touch it. When two bonds 〈x, d〉 and 〈x′, d′〉 do not share a
site between them the bond Hamiltonians commute, i.e.,

[
Hx,d,Hx′,d′

]
= 0. This property is key to a

factorization that allows for faster updates.

However, once the temperature is low enough (and thus β is large enough), we should expect to
have so many bonds that all the sites end up entangled into a single bag, leaving us with no ability to
take advantage of small bags. We can circumvent this problem by dividing the low temperature space
into several high temperature spaces. Since the space-time density of bonds is a physical quantity
related to the energy density of the system [12], we expect a fixed density of bonds for a particular set
of model parameters. At high temperatures we will have fewer bonds and many small fermion bags,
and as mentioned before when the temperature is lowered fermion bags will begin to merge to form
a single large fermion bag. This suggests that at some optimal temperature the fermion bags may
efficiently break up the system into smaller regions that do not depend on the system size. Even at
low temperatures, we may be able to divide the imaginary time axis into many time-slices and update
a single time-slice efficiently. This is illustrated in the right image of Figure 1, where the imaginary
time extent is divided into four-time slices and in the shaded time-slice there are eight fermion bags,
instead of the four shown in the middle image.

A nice property is that the sizes of these fermion bags appear independent of the lattice size. In
Figure 2 we took model 3 near its critical point, and taking β = 4.0 we divided the imaginary time
direction into 16 time-slices and studied the fermion bag size as a function of the lattice size. For
equilibrated configurations of L = 48, 64 and 100, the average maximum fermion bag size within
a time slice was about 30–independent of L (see Figure 2). Further tests suggests that the optimal
temperature is roughly 0.25. Since bond insertions in different fermion bags commute with each
other, we can efficiently update fermion bags in space-time blocks (shown as a box in the shaded time
slice in the right image of Figure 1) involving 30 to 60 spatial sites within each time slice.
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Figure 2. The maximum fermion bag size in a timeslice of .25 as a function of lattice size. We see that this size
remains constant even for large lattices so long as the timeslice remains the same size.

2.2 Mathematical Details

To study the critical behavior of a model using the expansion (7), we need a mathematical expression
for

Ωn([x, d, t]; t0) = Tr
[
Hxk ,dk ...Cn...Hx2,d2 Hx1,d1

]
. (8)

Here 0 ≤ t0 ≤ β is a time where the operator Cn is introduced. In the partition function sector
C0 = I (the identity operator) and in the observable sector C1 = Ô, where Ô is operator for the
order parameter we would like to measure. The operator O must be written in terms of exponentiated
bilinear operators.

Because every factor in (8) is an exponentiated bilinear factor, we can apply the BSS formula to
(8) and get

Ωn ([x, t, b]; t0) = det
(

N + Bxk ,dk ...On...Bx2,d2 Bx1,d1

)
, (9)

where Bx,d and On are N × N matrices, where N is the number of sites, and now the matrices have
a commutation property analogous to that of the Hx,d operators in that

[
Bx,d, Bx′,d′

]
= 0 if the corre-

sponding bonds share no sites in common.
For model (3) in particular, Bxi,di is the identity matrix except in a 2 × 2 block labeled by the rows

and columns of the sites that touch the bond 〈xi, di〉. Within this block, Bxi,di takes the form

Bx,d =

(
cosh 2α ηx,d sinh 2α
ηx,d sinh 2α cosh 2α

)
. (10)

Also, the matrix O0 is the identity, whereas O1 comes from the order parameter operator C =

(−1)L/2 (n(0,0) − 1/2
) (

n(L/2,0) − 1/2
)

and is given by (O1)x,y = δx,y − 2δx,(0,0) − 2δx,(L/2,0).
Now we have what we need to make fast updates according to the fermion bags. As mentioned

earlier, we divide the configuration space into smaller timeslices–for model (3) we used timeslices of
width 0.25, with t0 chosen to be at the beginning of the first time slice. We then update bonds within
each time-slice sequentially. During the update of a time-slice we define two N × N matrices: the
background matrix MB (which is a product of all of the Bx,d matrices outside the selected time-slice
and On), and the time-slice matrix MT , which is the product of all the Bx,d matrices within the time-
slice being updated. The right image of Figure 1 shows what contributes to MB and MT . When the
configuration of bonds within the time-slice is changed then only MT changes to M′T . The ratio R is
given by

R =
det( N + MBM′T )
det( N + MBMT )

= det ( N +GB∆) , (11)
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where we have defined two new N × N matrices: GB = ( N + MBMT )−1 MBMT and ∆ =(
M−1

T M′T − N

)
. Since the bond matrices Bx,d in different fermion bags commute, it is easy to ver-

ify that ∆ is non-zero only within a block which contains spatial sites connected to fermion bags that
change. If we randomly choose a spatial block containing about 30 − 60 sites and focus on updating
the bonds only within that block, during such a block-update the size of the matrix ∆ cannot be greater
than the sum of the sites in the fermion bags that touch the sites within the block. We refer to this set
of sites, which can be larger than the block size, as a super-bag and denote its size as s. Since ∆ is
non-zero only in an s × s block, it is easy to show that the computation of R (the ratio of the weight
of the current configuration with that of the background configuration that existed at the time when
the block update began) using (11), reduces to the computation of the determinant of an s × s matrix.
Since GB and MT are fixed matrices during the entire block-update, they can be computed and stored.
All proposals to update the current configuration within the block reduce to taking the determinant of
an s × s matrix, independent of system size.

Beyond this main savings, there is one other aspect where the fermion bags allow us to save time,
and that is for the updates to GB. First note that given two matrices, M1 and M2, we have the identity

( + M1M2)−1 =

( + M2)−1
(
( + M1)−1 ( + M2)−1 + ( + M1)−1 M1M2 ( + M2)−1

)−1
( + M1)−1 .

(12)

Further it is convenient that ( + M)−1 M = − ( + M)−1. This means we can build GB from partial
versions labeled as GT = (1 + MT )−1MT associated with each time slice T . This is important to
keep the calculation of GB stable. The matrix GT in turn is obtained by combining the bond-specific
Gx,d = (1 + Bx,d)−1Bx,d matrices within a time slice. We can do this efficiently using the idea of
fermion bags. For each fermion bag in a given time-slice, we first construct G f from the Bx1,d1 to
Bx f ,d f matrices that belong to a specific fermion bag. Thus the non-identity block of each G f is a
matrix with f rows and f columns corresponding to the fermion bag sites. We can then combine the
G f matrices into a GT matrix, which has distinct blocks according to the fermion bags. Thus, while
GB is an N × N matrix, we can use the idea of fermion bags along with the identity (12) to reduce
the number of O

(
N3
)

operations. While this does not reduce the scaling of the algorithm, it does
significantly reduce the prefactor.

These are the main aspects of the algorithmic updates that are helped by the fermion bags. The
full details of the algorithm are given in [13].

3 Results

The results at the time of Lattice 2017 are summarized by the plots in Figure 3. The left image
demonstrates the stability of the algorithm by showing the high-temperature equilibration of 100×100
lattices (10,000 sites) at β = 4.0. Now low temperature equilibrations of 64×64 lattices and 100×100
lattices can be found in [13]. For β = L sweeps on 48×48, 64×64, and 100×100 lattices on a single
core are 4 hours, 30 hours, and 30 days respectively.

The middle figure and left figure give our calculations that were done at the couplings V = 1.304t
and V = 1.296t. These were the critical couplings found by [6] and [7]. At the critical coupling, the
power law behavior of

〈C〉 = a
L1+η , (13)

is expected. Our calculations include lattices up to size 48×48 (2304 sites) and fit the data to (13).
For V = 1.304t, the power law fit was poor and the η value was only .149(9). However, when we
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significantly reduce the prefactor.

These are the main aspects of the algorithmic updates that are helped by the fermion bags. The
full details of the algorithm are given in [13].

3 Results

The results at the time of Lattice 2017 are summarized by the plots in Figure 3. The left image
demonstrates the stability of the algorithm by showing the high-temperature equilibration of 100×100
lattices (10,000 sites) at β = 4.0. Now low temperature equilibrations of 64×64 lattices and 100×100
lattices can be found in [13]. For β = L sweeps on 48×48, 64×64, and 100×100 lattices on a single
core are 4 hours, 30 hours, and 30 days respectively.

The middle figure and left figure give our calculations that were done at the couplings V = 1.304t
and V = 1.296t. These were the critical couplings found by [6] and [7]. At the critical coupling, the
power law behavior of

〈C〉 = a
L1+η , (13)

is expected. Our calculations include lattices up to size 48×48 (2304 sites) and fit the data to (13).
For V = 1.304t, the power law fit was poor and the η value was only .149(9). However, when we
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Figure 3. Left: High temperature (β = 4.0) equilibration of large lattices for several couplings. Middle,Right:
Data for the couplings V = 1.304t and V = 1.296t, which were the critical couplings found in [6, 7].

dropped the larger lattices and only kept up to lattice size L = 20, we could achieve a good fit with
η = .31(2), consistent with the previous result of η = .318(8) that went up to L = 20 for specifically
model (3).[5, 6, 8] For V = 1.296t, the power law fit was again poor with an η value of .35(1). Again
dropping the larger lattices and this time keeping lattices up to L = 24 led to a good fit with η = .41(4),
consistent with the previous result of η = .43(2) that went up to L = 22 for specifically model (3).[7]
Both of these results suggest that larger lattices make a substantial difference in the calculation and
therefore are important in determining the critical behavior. In [13] we combine our data from several
different couplings (using lattices up to L = 48) and use a combined fit to calculate exponents of
η = .54(6), ν = .88(2), and Vc = 1.279(3)t.

4 Conclusion

We have shown how the fermion bag idea may be adapted into an algorithm suited to a Hamiltonian
context and given an example that shows the stability as well as potential of this algorithm. By using
lattices that were five times larger than those used in previous calculations we have shown the both the
algorithm’s power and the necessity of larger lattice calculations in determining the critical behavior
for this Gross-Neveu Ising universality class.
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