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Abstract. It has been shown that the choice of renormalization scheme is crucial for
four-quark operators, in particular for neutral kaon mixing beyond the Standard Model.
In the context of SMOM schemes, the choice of projector is not unique and is part of
the definition of the renormalisation scheme. I present the non-diagonal Fierz relations
which relate some of these projectors.

1 Introduction

A significant discrepancy has been observed for the four-quark operators matrix elements needed
in the study of neutral kaon oscillations beyond the Standard Model. Beyond the quenched ap-
proximation, these quantities have been computed by RBC-UKQCD, [1, 2], by ETM [3, 4] and by
SWME [5, 6]. The renormalisation factors have also been studied by Alpha [7]. In collaboration with
RBC-UKQCD, we have argued that the renormalisation procedure is responsible for this discrepancy:
this was first reported in [8, 9] and published in [10]. We have shown that two SMOM schemes
lead to very similar results after conversion to MS. However, for two of these quantities, these
SMOM results are inconsistent with the ones obtained through the traditional RI-MOM intermediate
scheme (with exceptional kinematics). We refer the reader to [11] for a review on the subject at this
conference and to [12] for more details on the recent RBC-UKQCD results.

In Fig 1, we show that RI-MOM results are consistent within each other, regardless of the number
of dynamical flavours, but significantly below the results obtained though RI-SMOM schemes. The
latter are also compatible with SWME [5, 6] where the renormalisation is performed at 1-loop in
perturbation theory. In [13], we studied in details the RI-MOM and SMOM schemes, and pointed
out potential issues with the RI-MOM procedure with exceptional kinematics. Using non-diagonal
Fierz transformation, I show here that the SMOM schemes called (y,,y,,) and (¢, ¢) are mathematically
different. These Fierz transformations presented here are general and can be used in different contexts.
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Figure 1. Bag parameters of two BSM matrix elements. We show that the SMOM results (green points) are
consistent within each other, but significantly different from the RI-MOM results with exceptional kinematics
(red points). The SWME results are obtained through 1-loop perturbative renormalisation and are also compatible
with our SMOM results. This effect is more pronounced for B, than for Bs but appears to be systematic. The
number of flavours does not seem to play an important role.

2 AS =2 Four quark operators

Within the Standard Model (SM), neutral kaon mixing involves the following colour unmixed four-
quark operator

O1 = Savu(l = y5)da) Spyu(1 = ¥5)dp) = (5y,(1 = y5)d) (5y,(1 = y5)d)unm)

where a and b are colour indices. The corresponding colour mixed operator reads

O} = Gayu(1 = y5)dp) (Spyu(1 = ¥5)da) = (5yu(1 = y5)d) (5yu(1 = ¥5)d) (i) - (1)

One can show through a Fierz transformation that these operators are identical, ie 0'1 = 0.

Beyond the Standard Model, it is customary to introduce four extra operators. Using the same
conventions, they can be written as two doublets, for example in the susy basis [14]:

0, = (1 -y5)d) 1 =ys)d)unm) - @)

03 = (s(1=vy5)d)(s5(1 = ys5)d)(mix) » )
and

Oy = (s(0=y5)d(s(1 +y5)d)unm) » @

Os = (1 -y5)d(s(1+ys)d)(mix) - ®

3 Fierz transformation

Denoting by I an arbitrary Dirac matrix, the four quark operators have the explicit form

(eTapd)) (5T ,5d%) (©6)
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where Greek indices run in Dirac space. Swapping the Dirac indices 8 < ¢ is equivalent to changing
the color structure, from colour-mixed to colour-unmixed and vice-versa. However, according to Fierz
theorem, one has
i o _ ijkl Tk
My Tly== > FRTE T )
k1

where the indices i, j, k,/ run from 1 to 16, and the 16 matrices I'" form a basis of the four-by-four
complex matrices. F is therefore a 16* tensor, whose entries are a priori unknown.

As a consequence, the colour mixed operators can be expressed in terms of linear combination
of colour unmixed operators. We also note that Fierz transformation are properties of the I matrices,
therefore the Fierz identities are exact on the lattice. However these identities only hold in four-
dimension; in MS, these identities are modified by the presence of evanescent operators.

3.1 Choice of basis

It is possible to choose a basis in which all the operators are colour unmixed

Q> = syl =ys5)d) (syu(l +ys)d) (®
03 = (1 =ys5)d)(s(1 +7ys5)d) (&)
and
Qs = (0 =1ys5)d)(s(1 —7ys)d) (10)
1
05 = Z(E(‘Tﬂv(l = ¥s)d) (s(o (1 = ¥5))d) (1)

where we omitted the colour indices. This choice can be found for example in [15].

We now separate the parity sectors, for example Q1 = Qf + Q] with
1 = (57ud) (5y,d) + (57, 75d) (Syuysd) = VV + AA 12)
using the standard notation
SS = (5d)(5d)
VV = (5y,d)(5yud)

TT = 3 (7ud) ()
v>u
AA = (5D(Fy,ysd)

PP = (5ysd)(Sysd)

We can derive the well-known Fierz identities, in Eucledian space time we find

VV +AA 1 0 0 0 0 VV +AA
VV - AA 0o 0 -2 0 0 VV - AA
SS - PP =0 -1/2 0 0 0 |x|Ss-pPP : (13)
SS + PP 0 0 0 -1/2 12 SS + PP
rr Jo Lo 0o 0 32 12 T o

see for example [16]. We note the mixing pattern expected from chiral symmetry is respected, ie
VV + AA renormalises multiplicatively, VV — AA and §'S — PP mix together, and so do §'S + PP and
TT. However these identities are a restriction to the diagonal case, ie i = j in Eq.(7). Other Fierz
relations can also be found in [17].



EPJ Web of Conferences 175, 10005 (2018) https://doi.org/10.1051/epjconf/201817510005
Lattice 2017

3.2 Choice of projectors

Following the Rome-Southampton method, the renormalisation of a four-quark operators O requires
the projection of an amputated green function Ay

P[Ao]l =T, (14)
where T is the tree level value and P is a projector in Dirac and colour space

[ P]ab,cd — [ PDirac] PColour

ab,cd
af ] .

apB.ys [ (15)

In the operator mixing case P and Ay are vectors, P [Ap] and T are matrices.

As an example, let us consider the standard model operator VV + AA. A natural choice for P is

[PDiralc]alB,y(S = [7“](43 X [y”]yd + [7,175]%, X [’Yy’YS]y(s P (16)
[PCOIUur]ub’Cd 5le6€d = punm (17)

We have defined the projector with the same Dirac-colour structure as the operator. Such a projector
is called a y,-projector = P”*. Note that we can also define

[PCOIour]ab’Cd = §Mdgeb = pmix , (18)

However, if a SMOM scheme is implemented, there is a non zero momentum transfer g = p, — p;.
Therefore we can also define a so-called ¢-projector [18]

P4 = [f X ¢ +qys X ¢ys) PO (19)

The choice of Projector is part of the definition of the scheme, they lead to (a priori) different
non-perturbative Z factors and have different MS conversion factors. (After conversion to MS, the
Z factors should agree up to truncation error in the perturbative expansion and to discretisation
artefacts.).

The “recipe” to define a ¢-projector for a four-quark operator is the substitution y, Xy, — ¢x¢. For
the operators Q34 = SS ¥ PP, where no vy, structure is present, the trick is to use a Fierz identity [13]

1

Pgs_pp P'" = ) Pyy_aaP™ | (20
1 A
Pgsipp P'" = 3 (Prr — Psspp) P™ . (21
For example, for Q5 3, we define
2
Pho= 7~ 4P (22)
2 .
Po= 7~ dsdP™ (23)

The corresponding Fierz identities for the ¢-projectors cannot be extracted from Eq.(13) because they
involve non-diagonal (i # j in Eq.(7)):

4> 4= q.4p (70 X 7;;) . (24)
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4 Non diagonal Fierz identities and ¢ projectors
We want to know explicitly the relation between the projector of different colour structure

Pipix = Fppom (25)

l

For the Standard Model operator, we have [19]

2
G <d+dys Xdyshmix = (q_ (70 X Vi + 775 X Wvs) = (@ X + dhys X 4?7’5)) ~ (26)

2 unm

Therefore

VV + AA 1 0 VV + AA
( 24 +dvs X ) )mix = ( 1ol )X( 2§ xd+dys X ds) )unm : @7
which can easily be diagonalised and we find that
2 1
?Mxﬂiﬂm Xqys) - E(”‘ X Vi + VuVs X Vu¥s) (28)
is eigenvector with eigenvalue —1.

We turn now to the case of the (8, 8) operators (0,3 or O45). We define

4s = dqvs. (29)
T = qudv (O-pp X O-vp) P (30)
TsTs = aquay (Tuoys X opys) 31)

and derive the following Fierz matrix

VV — AA 0 -2 0 0 VV — AA

SS - PP -1/2 0 0 0 SS - PP
2Gd—dsts) | S| o -1 0 12 |X| 2Ud-dstn | 0GP
2T =TsTs) ) 1 0 -2 0 20T =TsTs) )

We recognise the y,-projectors in the top-left corner, and we check that the ¢ are not linear combi-
nations of the y,-projectors. Therefore, the vy, and ¢-projectors defined above (and in [13]) lead to
independent renormalisation schemes.

For the (6, 6) operators, the same can be done, but the tensor has be taken with care. Up to parity-
odd terms, we have

I-ys)x(Q=ys) = Ix1l+ysxys, (33)
ol =—ys)Xou(l-ys) = 20, Xou, (34)
Gty (Tup(1=¥5) X (1 =75)) = Gutty (g X O + Tp¥s X Tpys) - (35)
The last equation can be written as
q2
Quldy (Tup X Tvp + TyypYs X TypYs) = = Ty X Oy » (36)
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which means that the naive definition of a ¢-projector for the tensor is directly proportional to
corresponding y,-projector.
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