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Abstract. The quantum self-organization is introduced as one of the major underlying mechanisms of the
quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons,
single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as
the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation)
and the resistance power against it. The single-particle energies are one of the sources to produce such resis-
tance power: a coherent collective motion is more hindered by larger spacings between relevant single particle
states. Thus, the single-particle state and the collective mode are “enemies" against each other. However, the
nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by
changing single-particle energies for each eigenstate through monopole interactions. This will be verified with
the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle ener-
gies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to
control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost
free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a sim-
ple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more
important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

1 Introduction

The underlying mechanisms of the many-body structure
of atomic nuclei have been studied over decades as one
of the most important objectives of nuclear physics. It
has then been understood usually that there are two types
of dominant motion of nucleons in the atomic nucleus
: single-particle states and collective modes. Regarding
the single-particle states, Mayer and Jensen introduced
the shell structure and associated magic numbers [1–3].
The nuclear shell model developed on these concepts has
been extremely successful in the description of the struc-
ture of many nuclei (see for example [4–6]). The col-
lective modes include various cases. Among them, the
deformation of the nuclear shape has been studied since
Rainwater [7], and Bohr and Mottelson [8, 9]. The nu-
clear shapes have been one of the major focuses of the
nuclear structure physics, including spherical, vibrational
and rotational ones [10]. The relation between the single-
particle states and the collective modes has naturally be-
come of much interest, as described by Bohr and Mottel-
son in [10] as “the problem of reconciling the simultane-
ous occurrence of single-particle and collective degrees of
freedom and exploring the variety of phenomena that arise
from their interplay”.

The atomic nucleus is a many-body quantum system
comprised of protons and neutrons, which is often consid-

ered to be described in terms of Landau’s Fermi Liquid
picture. In a somewhat simplified expression of this pic-
ture, protons and neutrons of a nucleus are in a mean po-
tential which is like a rigid “vase”, and those nucleons are
like free particles moving in this vase, interacting weakly
among themselves through a “residual interaction”. The
single-particle energies (SPE) of such a system exhibit the
shell structure, and are split in general. If the splitting is
large enough, the many-body structure is dominated by the
SPEs: nucleons occupy the lowest single particle states in
the ground state, the next lowest configuration gives us the
first excited state, and so forth. In such cases, the corre-
lations due to the interaction between nucleons may con-
tribute, but their effects are minor, more or less, compared
to the effects of SPE splittings. However, if the energy
gain from such correlations overcomes the relevant SPE
splittings, a collective mode dominates the structure of the
ground and low-lying states. Although the understanding
of the relation between the single-particle states and the
collective modes has been pursued in many ways, it seems
to remain an open problem. For instance, G.E. Brown had
kept, throughout his life, the question, “how single particle
states can coexist with collective modes” as quoted from
“Fermi liquid theory: A brief survey in memory of Gerald
E. Brown” in [11]. We shall present a novel mechanism
which is closely related to this problem.
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Figure 1. Systemtic changes of the 2+1 level in (upper) Sm and
(lower) Zr isotopes, as functions of N. Data taken from [14] for
Sm. The right panel is based on [12].

2 Nuclear shapes and quantum phase
transition

We shall focus on the quadrupole deformation of the nu-
clear shape in this talk, while the scope can be extended.
Figure 1 exhibits the excitation energy of 2+1 state, or the
2+1 level, for Sm and Zr isotopes as a function of the neu-
tron number, N. In the Sm chain, the 2+ level comes down
rather gradually, similarly to many other isotopic chains.
As shown in Fig. 1, a higher 2+ level corresponds to a
spherical shape and its surface oscillation, while a lower
2+ level implies an ellipsoidal deformed shape and the ro-
tation of the ellipsoid. On the other hand, in the Zr chain,
the 2+ level drops down abruptly in moving from N=58
to 60. Due to this abrupt change, this phenomenon can be
referred to as a quantum phase transition [12]. Likewise,
the ground-state structure of the Zr isotopes is changed
drastically between N=58 and 60, also from the sphere to
the strongly deformed ellipsoid. The Monte Carlo Shell
Model (MCSM) describes both situations including the
abrupt change with the same Hamiltonian [12, 13].

3 Monte Carlo Shell Model

We here sketch the MCSM briefly [15, 16]. The MCSM
is a recent method to obtain eigensolutions of the shell-
model calculation in nuclear physics. The shell-model

calculation is quite similar to the configuration interac-
tion (CI) calculation in other fields of science. The ma-
jor differences are that (i) the two ingredients, protons and
neutrons, are taken instead of electrons, and (ii) nuclear
forces are considered instead of Coulomb or other forces.
In conventional shell-model calculations, the matrix of the
Hamiltonian with respect to many Slater determinants is
diagonalized. Because a huge number of configurations
are needed for the description of large systems, the dimen-
sion of the matrix can be enormous, making the calcula-
tion infeasible. On the other hand, many interesting and
important problems lie beyond this limit. The MCSM pro-
vides a breakthrough in this regard. The MCSM is very
different from the conventional shell-model calculation. A
set of Slater determinants, called MCSM basis vectors,
is introduced, and the diagonalization is performed in the
Hilbert space spanned by the MCSM basis vectors. Each
MCSM basis vector is a Slater determinant composed of
single-particle states that are superpositions of the original
single-particle states, and the amplitudes of these superpo-
sitions are determined through a combination of stochastic
and variational methods. Even when the dimensions are
in the order of 1023 for the conventional shell model, the
problem can be solved, to a good approximation, with up
to approximately 100 MCSM basis vectors.

4 Quantum Phase Transition in Zr
isotopes

We shall look into the structure changes in Zr isotopes
based on the MCSM calculation. The upper panel of Fig. 2
shows the occupation numbers of proton orbits for some
states. The g9/2 orbit is almost empty in the 0+1 state of
98Zr, whereas it is occupied by about 3.5 protons in its 0+2
state. Note that this 0+1 (0+2 ) state is spherical (deformed).
Such changes, including the numbers of proton holes in
the p f orbits, result in substantial shifts of the neutron (ef-
fective) SPEs as shown schematically in the middle panel
of Fig. 2. The proton-neutron monopole interaction (wavy
line in the figure) generates those shifts. The right panel
depicts the actual neutron effective SPEs. One notices a
substantial change in SPE for the different states consid-
ered. One sees that the spacing between the d5/2 and g7/2
orbits is nearly 5 MeV for the 0+1 state of 98Zr, but it is re-
duced to about 2 MeV in 0+2 state. Such a reduced splitting
is found also in the 0+1 state of 100Zr which is also strongly
deformed.

We now discuss why the SPEs are so different between
spherical and deformed states. We first point out that the
nuclear deformation at low excitation energy is a Jahn-
Teller effect [17], meaning that the collective motion caus-
ing the deformation occurs as a consequence of coherent
contributions from some relevant orbits near the Fermi en-
ergy. For such coherent effects, larger splittings of SPEs
weaken the coherence, leading to less collectivity. On the
other hand, the monopole interaction can change the effec-
tive SPEs depending on the occupancy of the other nucle-
ons. If the monopole interaction were uniform, no config-
uration dependence would appear, and this change should
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Figure 2. (upper) Occupation numbers of proton orbits of Zr iso-
topes. (middle) Schematic illustration of the changes of neutron
(effective) single-particle energies in Zr isotopes. (lower) Actual
values of neutron (effective) single-particle energies obtained in
the calculation of [12]. Upper and lower panels are based on
[12].

be absent. The tensor-force component of the nuclear
force makes the monopole interaction attractive or repul-
sive, depending on the combination of the orbits [18, 19].
This is certainly against the uniformity, and its effect can
be crucial. The central-force component changes its mag-
nitude also depending on the combination of the orbits
mainly due to varying overlaps of radial wave functions of
single-particle states [19]. Thus, the monopole interaction
is indeed far from being uniform, and the selection of fa-
vored configurations can move the SPEs of relevant orbits
substantially. If relevant SPEs can be made closer to being
degenerate, it helps the deformation. We shall formulate
this novel mechanism in the next section.

5 Quantum self-organization

The nuclear deformation is determined by the balance
between the effect of the collective-mode driving force

and the resistance power against this collective mode. A
schematic expression of this property is,

deformation =
quadrupole force
resistance power

. (1)

The collective-mode driving force is the quadrupole (or
quadrupole-quadrupole) interaction in the case of the el-
lipsoidal shape. This interaction is one of the major com-
ponents of the proton-neutron realistic force. A typical
example of the resistance power is the pairing interaction,
which tends to make the shape more spherical because all
time-reversal pairs are equally favored. Keeping the pair-
ing interaction aside, we shall consider another source of
the resistance power. That is the SPEs.

We here propose a novel mechanism called, Quan-
tum Self-Organization. This mechanism means the
following property: Atomic nuclei can “organize” their
single-particle energies by taking particular configurations
of protons and neutrons, optimized for each eigenstate,
thanks to orbit-dependences of monopole components of
nuclear forces (e.g., tensor and central forces). This re-
sults in an enhancement of Jahn-Teller effect, i.e., an en-
hancement of the collective mode. The deformation andk
quantum self-organization can be linked in a non-linear
way with a positive feedback : once some nucleons are
excited to particular orbits, the SPEs are shifted in favor of
a larger deformation. A larger deformation can promote
such excitations with more nucleons. This cycle continues
until a self-consistency is achieved, whereas intermediate
situations are skipped. In many cases, massive excitations
are involved, and the particle-hole hierarchy is broken, for
instance, a 6p-6h deformed state comes right after a 2p-2h
near-spherical state, skipping 4p-4h state [20].

The property shown in eq. (1) is somewhat analogous
to the relation,

electric current =
voltage

resistance
, (2)

where the electric current, voltage and resistance mean the
usual quantities regarding the electricity. The higher volt-
age produces a higher current, but the current can be in-
creased also by decreasing the resistance. The quantum
self-organization implies that the atomic nucleus finds par-
ticular configurations which decrease the resistance power.

The most favorable configurations and associated
SPEs vary for individual eigenstate even within the same
type of the collective mode. For instance, prolate, oblate
or triaxial shapes belong to the quadrupole deformation,
but can appear with different patterns of the SPEs within
the same nucleus. The oblate shape is less affected by the
quantum self-organization, because smaller numbers of
nucleons on unique-parity orbits are the key element of the
oblate shape in most cases. In those cases, the organiza-
tion of many orbits are rather irrelevant, and the quantum
self-organization may not occur to a sizable extent. This
feature has been verified with concrete cases. On the other
hand, many orbits contribute coherently to the prolate de-
formation, and the quantum self-organization can produce
crucial effects. This has been confirmed by changing the
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Figure 3. Potential Energy Surface with the axially symmetric
deformation for 68Ni. The red solid line denotes the energy of the
constrained Hartree-Fock calculation with the original Hamilto-
nian. The blue dashed line implies the same calculation except
that the quantum self-organization is suppressed (see the text).
Figure taken from [20].

monopole interactions, for instance, closer to the uniform
one.

We present a concrete example by taking the case of
the prolate band in 68Ni [20]. The monopole interaction
between the neutron 1g9/2 orbit and the proton 1f5/2 or-
bit is more attractive than that between the neutron 1g9/2
orbit and the proton 1f7/2 orbit mainly due to the ro-
bust property of the monopole interaction of the tensor
force, and this difference serves as the major origin of
the quantum self-organization in this particular case: more
neutrons in the 1g9/2 orbit reduces the 1f7/2-1f5/2 spin-
orbit splitting for protons [18, 19, 21]. The effect of this
difference on the deformation can be seen quantitatively
by replacing the strengths of these monopole interactions
with the average of their original values, i.e., the same
value. Likewise, we reset the monopole interaction be-
tween the neutron 1f5/2 and the proton 1f7/2 orbits and
that between the neutron 1f5/2 and the proton 1f5/2 or-
bits. These modifications correspond basically to the re-
moval of the tensor-force monopole contributions, and are
nothing but the suppression of the present effects of the
quantum self-organization. The resulting Potential En-
ergy Surface is shown in Fig. 3 for the axially symmetric
deformation compared with that obtained from the origi-
nal Hamiltonian. Around the spherical minimum the en-
ergy curves of the two calculations are similar, however,
when going to stronger deformation values, the two ap-
proaches differ substantially. In particular, the prolate pro-
found local minimum, seen in the original calculation (red
solid line), is pushed up by about 4 MeV, if the quantum
self-organization is suppressed as described above (blue
dashed line). Thus, the quantum self-organization is a part
of the crucial mechanisms producing the nuclear deforma-
tion.

At this point, we mention that the SPE being discussed
corresponds somehow to the spherical terms in the Nilsson
model [10] which are comprised of the �� and �s terms

as well as the harmonic-oscillator-quanta term. As their
strengths are independent of the deformation, the present
effect is not included in the Nilsson model.

Type-II shell evolution [20] has been discussed, for in-
stance, in Co/Ni region [21–23], where neutrons are ex-
cited from the p f shell to g9/2 across the N=40 sub-magic
gap. The neutrons in g9/2 and neutron holes in f5/2 pro-
vide similar sizable monopole effects, as discussed above.
A smaller 1f7/2-1f5/2 spin-orbit splitting for protons re-
duces the resistance power against deformation, pulling
down the prolate band as seen in Fig. 3. Type II shell evo-
lution was introduced as the particle-hole excitation over
a magic or sub-magic gap. Clearly, this kind of mech-
anism is a very simple and visible case of the quantum
self-organization. On the other hand, the quantum self-
organization can occur certainly in more complex ways.
Such a complex way may be found in the shape transition
of Sm isotopes (see Fig. 1), where no magic or sub-magic
gap is involved. We can see the spherical-vibrational-
rotational shape evolution in MCSM calculations, as will
be reported in detail elsewhere.

Likewise, the shape coexistence in Hg/Pb isotopes
have been studied. In those cases, the quantum self-
organization gives intriguing contributions on the pattern
of the shape coexistence, as reported also elsewhere.

6 Summary and Perspectives

We presented a novel mechanism on the relation between
single-particle states and collective modes. A summary is
given below.

• The atomic nuclei are not like simple rigid vases con-
taining almost free nucleons interacting only weakly.
This is in contrast to the naïve Fermi liquid picture.

• Nuclear forces are rich enough to change single-particle
energies for each eigenstate, and can lead to the quantum
self-organization.

• Single-particle energies can be self-organized, being en-
hanced by
(i) two quantum liquids (e.g., protons and neutrons)
(ii) two major force components
e.g., quadrupole interaction: to drive collective mode
monopole interaction: to control resistance

• Type II shell evolution is a simple visible case involving
excitations across (sub)magic gap.

• Actual cases such as shape coexistence, quantum phase
transition, octupole vibration/deformation, super defor-
mation, etc. can be studied with this scope.

• The quantum self-organization becomes more important
in heavier nuclei where the number of active orbits and
the number of active nucleons are larger. With larger
numbers of them, the effects of the organization can
be more significant. This feature may be linked to fis-
sion and superheavy elements. On the other hand, the
quantum self-organization may not be so visible in light
nuclei except for particular cases like intruder bands or
cluster (or multiple particle-hole excited) states.
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• Time-dependent version of quantum self-organization
may be of another interest for reactions and fission.

The MCSM calculations were performed on the
K computer at RIKEN AICS (hp140210, hp150224,
hp160211,hp170230). This work was also supported in
part by the HPCI Strategic Program (The origin of matter
and the universe) and “Priority Issue on Post-K computer”
(Elucidation of the Fundamental Laws and Evolution of
the Universe) from MEXT and JICFuS.
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