Strong coupling in 65,67Mn

Xiaoyu Liu1,2,*, Zhong Liu1, and Bing Ding1

1Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
2University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Excited states in 63,65,67Mn were studied via in-beam γ-ray spectroscopy following knockout reactions from 68Fe. Similar level schemes, consisting of the $\frac{11}{2}^-, \frac{9}{2}^-, \frac{7}{2}^-$ and $\frac{5}{2}^-$, level sequence, connected by $I \rightarrow I-1$ transitions, were established. Their level structures show features consistent with strongly-coupled rotational bands with $K = \frac{5}{2}$.

1 Introduction

At the $N = 40$ harmonic oscillator shell closure, 68Ni has the appearance of being doubly magic based on the high 2^+_1 energy and a low transition probability. However, well deformed low-lying states with considerable particle-hole excitation strength across the $N = 40$ gap have been observed and/or predicted in the nuclei around 68Ni, described as a new “island of inversion” [1]. Lying in between Cr and Fe, Mn isotopes are expected to be well deformed around $N = 40$, so it is very intriguing and challenging to reveal the coupling mode in these odd-mass Mn isotopes.

2 Experiment and Results

The experiment was performed at the Radioactive Isotope Beam Factory (RIBF). A 15 pnA 238U primary beam, accelerated to 345 MeV/u, was impinged on a 3-mm-thick 9Be primary target for the production of secondary radioactive isotope beam at the entrance of the BigRIPS separator. The isotopes of interest were selected and separated from the secondary beams, and then impinged on a 102(1)-mm-thick liquid hydrogen (LH$_2$) secondary target. The secondary reaction residues were produced via proton-induced knockout reactions. The particle identification before and after the LH$_2$ target was performed in the BigRIPS and ZeroDegree spectrometer. The Time-Projection Chamber (TPC) of the MINOS device surrounding the LH$_2$ target was used to reconstruct the vertex of the knockout reactions. The γ rays emitted in-flight were measured by the DALI2 γ-ray spectrometer surrounding the MINOS device.

In the present work, excited states of 63,65,67Mn were populated by the fragmentation of 68Fe via the 68Fe$(p, 2p xn)$ reaction channels, with $x = 4, 2$ and 0, respectively. The Doppler-corrected γ-ray spectra are displayed in figure 1. The γ-transition energies, relative intensities after efficiency calibration, and the tentative spin-parity assignments of the initial and final states are summarized in table 1. The spin-parity assignments were made following the systematics of low-lying levels in the lighter odd-mass Mn isotopes.

*e-mail: liuxiaoyu@impcas.ac.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Figure 1. (Color online) Doppler-corrected γ-ray spectra of 63,65,67Mn detected by DALI2, and the background subtracted γ-γ coincidence spectra labeled with the gating transitions are displayed in the insets.

Table 1. The γ-transition energies (E_γ), relative intensities after efficiency calibration (I_γ) observed in 63,65,67Mn, and the tentative spin-parity assignments of the initial and final states.

<table>
<thead>
<tr>
<th>$J^\pi_i \rightarrow J^\pi_f$</th>
<th>63Mn</th>
<th>65Mn</th>
<th>67Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>($7/2^-$) \rightarrow 5/2$_{g.s.}$</td>
<td>249(5)</td>
<td>273(5)</td>
<td>280(5)</td>
</tr>
<tr>
<td>($9/2^-$) \rightarrow ($7/2^-$)</td>
<td>645(6)</td>
<td>510(6)</td>
<td>497(7)</td>
</tr>
<tr>
<td>($11/2^-$) \rightarrow ($9/2^-$)</td>
<td>376(7)</td>
<td>394(6)</td>
<td>427(8)</td>
</tr>
</tbody>
</table>

3 Summary

In summary, we studied the spectroscopy of 63,65,67Mn. Very similar level schemes with $11/2^- \rightarrow 9/2^- \rightarrow 7/2^- \rightarrow 5/2^-_{g.s.}$ transition cascades were proposed. With the excitation energies following the $I(I+1)$ law and the decay pattern dominated by $\Delta I = 1$ transitions, the first cases of strongly-coupled rotational bands in the $N = 40$ “island of inversion” have been identified in 65,67Mn.

4 Acknowledgement

We express our gratitude to the RIKEN Nishina Center accelerator staff the BigRIPS team. The development of MINOS and the core MINOS team were supported by the European Research Council through the ERC Grant No. MINOS-258567. The work at Institute of Modern Physics was supported by the National Natural Science Foundation of China (Grant Nos. 11635003, 11675225, 11405224, U1632144 and 11435014), the Hundred Talented Project of the Chinese Academy of Sciences and the National Key Basic Research Development Program of China under Grant Nos. 2013CB834403 and 2013CB834404.

References