Study of photon strength functions via ($\vec{\gamma}, \gamma', \gamma''$) reactions at the γ^3-setup

Johann Isaak1,∗, Deniz Savran2, Tobias Beck3, Udo Gayer3, Krishichayan4, Bastian Löher3, Norbert Pietralla3, Marcus Scheck5, Werner Tornow4, Volker Werner3, and Andreas Zilges6

1Research Center for Nuclear Physics, Osaka University, Japan
2GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
3Institut für Kernphysik, TU Darmstadt, Germany
4Department of Physics, Duke University and Triangle Universities Nuclear Laboratory
5School of Engineering, University of the West of Scotland
6Institut für Kernphysik, Universität zu Köln

Abstract. One of the basic ingredients for the modelling of the nucleosynthesis of heavy elements are so-called photon strength functions and the assumption of the Brink-Axel hypothesis. This hypothesis has been studied for many years by numerous experiments using different and complementary reactions. The present manuscript aims to introduce a model-independent approach to study photon strength functions via γ-γ coincidence spectroscopy of photo-excited states in 128Te. The experimental results provide evidence that the photon strength function extracted from photoabsorption cross sections is not in an overall agreement with the one determined from direct transitions to low-lying excited states.

1 Introduction

The photon strength function (PSF) serves as an essential input for nuclear astrophysical model calculations. It plays an important role in capture and photo-disintegration reactions as well as in astrophysical scenarios describing the nucleosynthesis. In the past, different experimental methods and approaches have been used to study the PSF (see, e.g., Refs. [1–5] and references therein). However, many of these methods are model dependent either in the reaction mechanism itself or in the data analysis. In this contribution, we present a model-independent approach, exemplarily for 128Te, to extract the PSF in real-photon scattering experiments using quasi-monomochromatic photon beams provided by the High Intensity γ-ray Source (HIγS) [6] at Duke University, Durham, NC, USA.

2 Methods

In the following, two independent methods are introduced to determine the PSF for the excitation as well as for the decay channel in a single experiment exploiting the monochromatic character of the photon beam provided by the HIγS facility.

* e-mail: jisaak@rcnp.osaka-u.ac.jp
The photoabsorption cross section \(\sigma_\gamma \) (= \(\sigma_{\gamma\gamma} + \sigma_{\gamma\gamma'} \)) is linked to the PSF built on the ground state by \(f(E_\gamma) \propto \sigma_\gamma / E_\gamma \) assuming predominantly dipole transitions. The procedure to determine \(\sigma_\gamma \) as a function of the excitation energy at HIyS was discussed in detail in previous works, such as [5, 7–9]. The idea is sketched in Fig. 1.a). After photoexcitation of the nucleus in a given energy range defined by the energy and the width of the quasi-monochromatic photon beam, \(\sigma_\gamma \) is measured by measuring all ground-state transitions (\(\sigma_{\gamma\gamma} \)) and all events cascading via intermediate levels (\(\sigma_{\gamma\gamma'} \)), where \(\sigma_{\gamma\gamma'} \) can be approximated by the intensity observed for the \(2^+_1 \rightarrow 0^+_1 \) transition [7].

The second approach is illustrated in Fig. 1.b) and c) and was firstly introduced in Ref. [2] using proton-\(\gamma \)-\(\gamma \) correlations in \(^{94}\text{Mo}(d, p)^{95}\text{Mo} \) reactions. Due to the novel \(\gamma \)-\(\gamma \) coincidence setup \(\gamma^2 \) [10] it is feasible for the first time to apply this method in (\(\vec{\gamma}, \gamma' \gamma'' \)) reactions, here shown for the example of \(^{128}\text{Te} \). Primary transitions from excited states at \(E_{x1} \) to low-lying excited levels yield information on the PSF at the corresponding transition energies: \(f(E_\gamma = E_{x1} - E_{2^+_1}) \propto I_{2^+_1 \rightarrow 2^+_1} \), with \(I_{2^+_1 \rightarrow 2^+_1} \) being the associated transition intensity. The observation of several direct transitions to low-lying states per excitation energy and beam-energy setting, respectively, allows to reconstruct the PSF over a broad \(\gamma \)-ray energy range, which is schematically shown in Fig. 1.c) for a hypothetical PSF. These two outlined approaches allow to independently study the PSF in the excitation and the decay channel, respectively.

![Figure 1. For details see text.](https://doi.org/10.1051/epjconf/201817803006)

3 Experiment & Results

For the present work a metallic and highly-enriched (99.8 %) \(^{128}\text{Te} \) target was used to perform photon-scattering experiments with quasi-monochromatic \(\gamma \)-ray beams with energies between 3 MeV and 9 MeV in steps of about 250 keV. The spectral distribution of the beam is usually about FWHM \(\approx 3 \) % of the beam energy.

Typical \(\gamma \)-ray spectra for the measurement of primary transitions to low-lying excited states after photo-excitation via an 8 MeV \(\gamma \)-ray beam are shown in Fig. 2.a). The blue spectrum is obtained from a gate on the energy of the \(2^+_1 \rightarrow 0^+_1 \) transition (\(E_\gamma = 743 \) keV). The peak at \(\sim 7.26 \) MeV corresponds to the full-energy events of the direct population of the \(2^+_1 \) level from excited states at 8 MeV. Primary transitions to other levels, such as \(3^+_3 \) (green spectrum) and \(2^+_4 \) (red spectrum) are determined in a similar fashion. The individual transition intensities can be converted into values of the PSF at the corresponding \(\gamma \)-ray energy.

All measured transition intensities for beam energies from 5.8 MeV to 8.5 MeV are shown in Fig. 2.b) as a function of the \(\gamma \)-ray energy (black filled squares). For the measurements...
with beam energies above 6.4 MeV decays into up to the $2^+\mathrm{g.s.}$ state are observed. Due to the steps of ~ 250 keV between two measurements it is possible to obtain data points at the same or similar γ-ray energy from different beam-energy settings. The fluctuations of the data points exhibit a factor of about 2-3, which is larger than expected from Porter-Thomas fluctuations of around 5% to 15%. This is one indication that the average decay properties of photo-excited states in ^{128}Te below the neutron separation threshold ($S_n = 8.78 \text{ MeV}$) cannot be described by a single excitation-energy independent PSF.

Nevertheless, the current data set is used to compute a moving average weighted by a Gaussian distribution with FWHM = 300 keV (grey shaded band). That averaged PSF is compared to the PSF extracted from photoabsorption cross sections (blue filled squares) shown in Fig. 2.c. A deviation of both PSFs as a function of the γ-ray energy is observed. This observation additionally indicates that the PSF built on the ground state (photo-excitation) differs from the PSF built on excited states (photo-deexcitation) for the present case of ^{128}Te, which is in contradiction to the Brink-Axel hypothesis [11, 12]. However, additional systematic studies applying the outlined approach and comparison to data from complementary experiments are crucial before general conclusions on the Brink-Axel hypothesis can be drawn.

This work was supported by EMMI (HA216/EMMI), the DFG under Grant Nos. SFB 634 and ZI 510/7-1, and the U.S. DoE under Grant No. DE-FG02-97ER41033.

![Figure 2](https://example.com/figure2.png)

Figure 2. For details see text.

References