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Abstract. We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By
using the latest experimental data for e+e− → hadrons as input to dispersive integrals, we obtain the values
of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as
ahad, LO VP
µ = (693.27 ± 2.46) × 10−10 and ahad, NLO VP

µ = (−9.82 ± 0.04) × 10−10, respectively. When combined
with other contributions to the SM prediction, we obtain aµ(SM) = (11659182.05 ± 3.56) × 10−10, which is
deviated from the experimental value by ∆aµ ≡ aµ(exp) − aµ(SM) = (27.05 ± 7.26) × 10−10. This means that
there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another
closely related quantity, the running QED coupling at the Z-pole, α(M2

Z). By using the same e+e− → hadrons
data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is
∆α(5)

had(M2
Z) = (276.11 ± 1.11) × 10−4, from which we obtain α−1(M2

Z) = 128.946 ± 0.015.

1 Introduction

The anomalous magnetic moment of the muon, aµ, also
known as the muon g − 2, is an extremely impor-
tant quantity in particle physics since it can be used to
probe/constrain new physics beyond the Standard Model
(SM). Experimentally, it has been measured to an ex-
tremely high precision [2], and the current world average
reads [3]

aµ(exp) = (11659209.1 ± 6.3) × 10−10 . (1)

This value should be compared to the SM prediction for
aµ. According to Ref. [1], the most recent value of the SM
prediction is

aµ(SM) = (11659182.05 ± 3.56) × 10−10 . (2)

The difference ∆aµ between Eqs. (1) and (2) is

∆aµ ≡ aµ(exp) − aµ(SM) = (27.05 ± 7.26) × 10−10 , (3)

which means a 3.7 σ discrepancy. This deviation may be
due to a contribution from physics beyond the SM, which
makes aµ extremely important. There are two experiments
which aim to improve the experimental uncertainty by a
factor of 4 [4, 5], which further enhances the importance
of this quantity.

2 Standard Model contribution to aµ

The SM contribution to the muon g−2 can be conveniently
separated into three pieces: the QED, electroweak (EW),
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and hadronic contributions,

aµ(SM) = aµ(QED) + aµ(EW) + aµ(had) . (4)

The QED contribution is a perturbatively calculable
quantity, and has been calculated up to and including 5-
loop diagrams [6]:

aµ(QED) = (11658471.8971 ± 0.007) × 10−10 . (5)

We should note that the 4-loop contributions are already
confirmed by other groups [7, 8]. In addition, the 5-loop
contribution is very small (∼ 0.5 × 10−10), and hence the
QED contribution does not pose any major problem to the
muon g − 2 in the near future.

The EW contribution is also perturbatively calculable,
and the current value reads [9]:

aµ(EW) = (15.36 ± 0.10) × 10−10 . (6)

The most problematic contribution is the hadronic con-
tributions. The hadronic contributions can be written as
the sum of a few terms:

aµ(had) = ahad, LO VP
µ + ahad, NLO VP

µ + ahad, NNLO VP
µ

+ ahad, LbL
µ + ahad, NLO LbL

µ , (7)

where the LO, NLO and NNLO hadronic vacuum polari-
sation (VP) contributions in the first line can be calculated
by using dispersive integrals, whilst to compute the light-
by-light (LbL) contributions in the second line we have to
rely on hadronic models to some extent.

According to our recent evaluation [1], the values of
ahad, LO VP
µ and ahad, NLO VP

µ are

ahad, LO VP
µ = (693.27 ± 2.46) × 10−10 , (8)
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Table 1. Breakdown of the SM prediction for the muon g − 2, together with the experimental value and the deviation between the
experimental value and the SM prediction. The numbers are given in units of 10−10.

QED contributions 11 658 471.8971 (0.007) Ref. [6]
EW contributions 15.36 (0.10) Ref. [9]
hadronic contributions

LO hadronic VP contributions 693.27 (2.46) Ref. [1]
NLO hadronic VP contributions −9.82 (0.04) Ref. [1]
NNLO hadronic VP contributions 1.24 (0.01) Ref. [10]
hadronic l-by-l contributions 9.8 (2.6) Ref. [11]
hadronic l-by-l NLO contributions 0.3 (0.2) Ref. [12]

Standard Model prediction, aµ(SM) 11 659 182.05 (3.56) Ref. [1]
experimental value, aµ(exp) 11 659 209.1 (6.3) Refs. [2, 3]
difference, ∆aµ (≡ aµ(exp) − aµ(SM)) 27.05 (7.26) , 3.7 σ Ref. [1]

and

ahad, NLO VP
µ = (−9.82 ± 0.04) × 10−10 , (9)

respectively. The value of the NNLO hadronic VP contri-
bution quoted in Ref. [10] is

ahad, NNLO VP
µ = (1.24 ± 0.01) × 10−10 . (10)

For the LbL contributions, we use the value of ahad, LbL
µ

in Ref. [11]:

ahad, LbL
µ = (9.8 ± 2.6) × 10−10 , (11)

and the value of ahad, NLO LbL
µ in Ref. [12]:

ahad, NLO LbL
µ = (0.3 ± 0.2) × 10−10 . (12)

By adding Eqs. (5), (6), (8), (9), (10), (11) and (12)
we obtain the SM prediction in Eq. (2), resulting in the 3.7
σ deviation between the experimental value and the SM
prediction, Eq. (3), as summarised in Table 1.

By comparing the various contributions to the SM pre-
diction, Eqs. (5), (6), (8), (9), (10), (11) and (12), we note
that the uncertainty from the LO hadronic VP contribution
is one of the largest. It is therefore extremely important
to evaluate this term as accurately as possible. In the next
section we discuss the evaluation of the LO hadronic VP
contribution in Ref. [1].

3 Leading Order Hadronic Vacuum
Polarisation Contribution to aµ

In this section we discuss the LO hadronic VP contribution
to aµ. We first give an overview of this contribution, and
then discuss recent update given in Ref. [1], often compar-
ing the result with the one given in Ref. [13], which is the
previous analysis in which two of the KNT collaboration
are involved. Below we refer to Ref. [13] as HLMNT.

3.1 Overview of LO hadronic VP contribution

The LO hadronic VP contribution can be calculated by us-
ing the dispersion integral,

ahad, LO VP
µ =

α2

3π2

∫ ∞
sth

ds
s

R(s)K(s) , (13)

where sth = m2
π, R(s) is the hadronic R-ratio,

R(s) =
σ0

had,γ(s)

σpt(s)
≡
σ0

had,γ(s)

4πα2/(3s)
, (14)

and K(s) is a kernel function. The superscript ‘0’ means
that the cross section should not include VP radiative cor-
rections, and the subscript ‘γ’ implies that the cross sec-
tion should be inclusive with respect to final state radia-
tions (FSRs). We have to exclude VP radiative corrections
since we must avoid possible double-counting with higher
order hadronic diagrams.

To understand the s-dependence of the kernel function
K(s), it is useful to define another function K̂(s) by

K̂(s) ≡ 3s
m2
µ

K(s) . (15)

The function K̂(s) is a monotonically increasing function
with K̂(m2

π) = 0.40, K̂(4m2
π) = 0.63 and K̂(s)→ 1 for s→

∞. The factor 1/s in the integrand of Eq. (13), together
with the s-dependence of K(s) as K(s) = K̂(s)m2

µ/(3s) =
O(1) × m2

µ/(3s), makes the low energy hadronic data im-
portant.

In Table 2, we show contributions to ahad, LO VP
µ from

important channels. As clearly seen from the table, the
contribution to the mean value as well as the uncertainty
from the π+π− channel completely dominates over the oth-
ers. This can be seen also from the pie charts, Fig. 1, where
the importance of the π+π− channel is represented as the
large area of the green region (the region 0.6 <

√
s < 0.9

GeV) in the upper panel. It follows that the good input
data in this channel is crucial for this analysis.
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3 Leading Order Hadronic Vacuum
Polarisation Contribution to aµ

In this section we discuss the LO hadronic VP contribution
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ing the result with the one given in Ref. [13], which is the
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µ =
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R(s)K(s) , (13)
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R(s) =
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Flavour changing and conserving processes

Table 2. Contributions from important channels to the
dispersion integrals Eqs. (13) and (29). The numbers from the

energy region
√

s ≤ 1.937 GeV include contributions from data
as well as near-threshold contributions to 2π, 3π and π0γ

channels. The numbers in the table are taken from Ref. [1].

channel ahad, LO VP
µ × 1010 ∆α(5)

had(M2
Z) × 104

Contributions from
√

s ≤ 1.937 GeV
π+π− 503.84 ± 1.97 34.27 ± 0.12
π+π−π0 47.80 ± 0.89 4.77 ± 0.08
K+K− 23.03 ± 0.22 3.37 ± 0.03
π+π−2π0 19.39 ± 0.78 5.00 ± 0.20
2π+2π− 14.87 ± 0.20 4.02 ± 0.05
K0

S K0
L 13.04 ± 0.19 1.77 ± 0.03

π0γ 4.58 ± 0.10 0.36 ± 0.01
KKπ 2.71 ± 0.12 0.89 ± 0.04
KKππ 1.93 ± 0.08 0.75 ± 0.03
...

...
...

Contributions from 1.937 ≤
√

s ≤ 11.199 GeV
Inclusive channel 43.67 ± 0.67 82.82 ± 1.05

Narrow Resonance Contributions
J/ψ 6.26 ± 0.19 7.07 ± 0.22
ψ′ 1.58 ± 0.04 2.51 ± 0.06
Υ(1S − 4S ) 0.09 ± 0.00 1.06 ± 0.02

Contributions from
√

s ≥ 11.199 GeV
pQCD 2.07 ± 0.00 124.79 ± 0.10
Total 693.27 ± 2.46 276.11 ± 1.11
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Figure 1. Upper panel: pie charts for the mean value and the
error-squared of the LO hadronic VP contribution to the muon
g − 2, ahad, LO VP

µ . Lower panel: pie charts for the mean value and
the error-squared of the 5-flavour quark contribution ∆α(5)

had(M2
Z)

to the QED coupling at the Z pole, α(M2
Z).

3.2 Update in Input Data

Since the HLMNT paper [13], in the most important π+π−

channel, two major data sets have appeared: one from
the KLOE experiment [14], and the other from the BE-
SIII collaboration [15]. To correctly compute the disper-
sive integral, we have to take into account correlations
between data sets. In the case of the KLOE data, there
are non-negligible correlations with their previous data
sets [16, 17]. These correlations are correctly summarised
in the covariance matrix in Ref. [18], which is used in the
KNT analysis [1]. By using these new data sets, together
with our improved data-combination algorithm, which we
will discuss in the next subsection, we obtain an improve-
ment of more than 30% in this channel compared to the
HLMNT analysis [13], as shown in Table 3.

In the π+π−π0 channel, a new data set appeared from
the SND collaboration [19], which covers the energy range
1.05 ≤

√
s ≤ 2.00 GeV.

In the K+K− channel, new precise data has been pub-
lished from BaBar [20] as well as from CMD-3 [21] and
SND [22]. Thanks to these new data, we have about a fac-
tor of 2 improvement in the uncertainty compared to the
HLMNT analysis.

In the π+π−π0π0 channel, a new data set appeared from
BaBar [23]. In the π+π−π+π− channel, new data sets have
been published from BaBar [24] and CMD-3 [25]. In both
channels, these new precise data sets allow us to signifi-
cantly reduce uncertainties from these channels.

These are just examples of new input data. For a full
list of new data, see our paper [1].

3.3 Improvements in Data Combination Algorithm

Compared to the HLMNT analysis, we have improved the
data combination algorithm.

To evaluate the dispersive integral Eq. (13), it is not a
good idea to integrate over raw experimental data. If we
would use this method, then the obtained uncertainty of
the dispersive integral would be dominated by the contri-
butions of those data points which have large uncertainties.
Instead, we should make full use of good accurate data. To
do so, we gather near-by data points into a bin (which we
call a ‘cluster’) and integrate over the clusters to evaluate
the dispersive integral. In this way, we can reduce influ-
ences from inaccurate data points.

In the HLMNT paper, when combining data, the au-
thors assumed a constant cross section across the width of
each cluster. In the KNT analysis, we linearly interpolate
the cross sections between adjacent clusters, which allows
us a more stable determination of the combined cross sec-
tion. The concrete procedure is the following: We first
determine cluster centres Em and the cross section value
Rm at E = Em by

Rm =

[ N(m)∑
i=1

R(m)
i

(dR̃(m)
i )2

][ N(m)∑
i=1

1

(dR̃(m)
i )2

]−1
, (16)

Em =

[ N(m)∑
i=1

E(m)
i

(dR̃(m)
i )2

][ N(m)∑
i=1

1

(dR̃(m)
i )2

]−1
, (17)
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Table 3. Difference between the KNT18 analysis [1] and the HLMNT11 analysis [13]. Similarly to Table 2, the numbers from the
energy region

√
s ≤ 2 GeV include contributions from data as well as near-threshold contributions to 2π, 3π and π0γ channels. Note

that although the default transition point between the sum of exclusive channels and the inclusive measurement is 1.937 GeV in
Ref. [1], in this table we take the transition point at 2 GeV for comparison. This table is extracted from Table 3 of Ref. [1]. For a full

table, see Ref. [1].

channel KNT18 [1] HLMNT11 [13] Diff
Contributions from

√
s ≤ 2 GeV

π+π− 503.86 ± 1.97 505.77 ± 3.09 −2.78
π+π−π0 47.83 ± 0.89 47.52 ± 0.99 0.31
K+K− 23.05 ± 0.22 22.15 ± 0.46 0.90
π+π−2π0 19.80 ± 0.79 20.37 ± 1.26 −0.57
2π+2π− 15.17 ± 0.21 14.65 ± 0.47 0.52
K0

S K0
L 13.05 ± 0.19 13.33 ± 0.16 −0.28

π0γ 4.58 ± 0.10 4.66 ± 0.14 −0.08
KKπ 2.80 ± 0.12 2.77 ± 0.15 0.03
KKππ 2.42 ± 0.09 3.31 ± 0.58 −0.89
...

...
...

Contributions from 2 ≤
√

s ≤ 11.199 GeV
Inclusive channel 41.27 ± 0.62 41.40 ± 0.87 −0.13

Narrow Resonance Contributions
J/ψ 6.26 ± 0.19 6.24 ± 0.16 0.02
ψ′ 1.58 ± 0.04 1.56 ± 0.05 0.02
Υ(1S − 4S ) 0.09 ± 0.00 0.10 ± 0.00 −0.01

Contributions from
√

s ≥ 11.199 GeV
pQCD 2.07 ± 0.00 2.06 ± 0.00 0.01
Total 693.27 ± 2.46 694.91 ± 4.27 −1.64

where E(m)
i and R(m)

i are the energy and the cross section
value of the i-th data point which gives a contribution to
the m-th cluster. dR̃(m)

i is the uncertainty of R(m)
i which is

defined as

dR̃(m)
i =

√
(dR(m)

i;stat)
2 + (dR(m)

i;sys)
2 , (18)

where dR(m)
i;stat and dR(m)

i;sys are the statistical and systematic

uncertainties of R(m)
i , respectively. N(m) is the total number

of the data points which contribute to the m-th cluster. We
now assume a linear interpolation between adjacent clus-
ters. In this case, the interpolant cross section value Ri

m at√
s = E(m)

i is given by,

Ri
m =


Rm +

E(m)
i −Em

Em+1−Em
(Rm+1 − Rm) , if E(m)

i > Em

Rm−1 +
E(m)

i −Em−1

Em−Em−1
(Rm − Rm−1) , if E(m)

i < Em

.

(19)

In addition, we have improved the χ2 function itself.
In the HLMNT paper, to construct the χ2 function, the au-
thors take into account the normalisation uncertainties of
experimental data by using the ‘penalty trick.’ Explicitly,

the χ2 function used in the HLMNT paper is

χ2
HLMNT(Rm, fk) =

Nexp∑
k=1

(
1 − fk

d fk

)2

+


Nclu∑
m=1

N(k,m)∑
i=1


R (k,m)

i − fkRm

dR (k,m)
i


2

w/out cov. mat.

+

Nclu∑
m,n=1

N(k,m)∑
i=1

N(k,n)∑
j=1

(
R (k,m)

i − fkRm

)
C−1(mi, n j)

(
R (k,n)

j − fkRn

)
,

(20)

where fk is the overall normalisation factor of the k-th ex-
periment. R(k,m)

i and dR(k,m)
i are the R-values and their er-

rors from k-th experiment which contributes to the m-th
cluster. The authors of the HLMNT paper determined the
values of fk and Rm by minimising this χ2 function.

Originally, this method is proposed to avoid a poten-
tial bias [26–28]. However, in Ref. [29], it is pointed out
that this method could also suffer from a potential bias.
An alternative way to construct the χ2 function, which is
proposed in Ref. [29] and used in the KNT analysis, is to
determine the combined cross sections by iteration. We
first construct the χ2 function χ2

1 for the first iteration as

χ2
1 =

Ntot∑
i=1

Ntot∑
j=1

(R(m)
i − R

i
m)C−1

1 (i(m), j(n))(R(n)
j − R

j
n) , (21)
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uncertainties of R(m)
i , respectively. N(m) is the total number

of the data points which contribute to the m-th cluster. We
now assume a linear interpolation between adjacent clus-
ters. In this case, the interpolant cross section value Ri

m at√
s = E(m)

i is given by,

Ri
m =


Rm +

E(m)
i −Em

Em+1−Em
(Rm+1 − Rm) , if E(m)

i > Em

Rm−1 +
E(m)

i −Em−1

Em−Em−1
(Rm − Rm−1) , if E(m)

i < Em

.

(19)

In addition, we have improved the χ2 function itself.
In the HLMNT paper, to construct the χ2 function, the au-
thors take into account the normalisation uncertainties of
experimental data by using the ‘penalty trick.’ Explicitly,

the χ2 function used in the HLMNT paper is

χ2
HLMNT(Rm, fk) =

Nexp∑
k=1

(
1 − fk

d fk

)2

+


Nclu∑
m=1

N(k,m)∑
i=1


R (k,m)

i − fkRm

dR (k,m)
i


2

w/out cov. mat.

+

Nclu∑
m,n=1

N(k,m)∑
i=1

N(k,n)∑
j=1

(
R (k,m)

i − fkRm

)
C−1(mi, n j)

(
R (k,n)

j − fkRn

)
,

(20)

where fk is the overall normalisation factor of the k-th ex-
periment. R(k,m)

i and dR(k,m)
i are the R-values and their er-

rors from k-th experiment which contributes to the m-th
cluster. The authors of the HLMNT paper determined the
values of fk and Rm by minimising this χ2 function.

Originally, this method is proposed to avoid a poten-
tial bias [26–28]. However, in Ref. [29], it is pointed out
that this method could also suffer from a potential bias.
An alternative way to construct the χ2 function, which is
proposed in Ref. [29] and used in the KNT analysis, is to
determine the combined cross sections by iteration. We
first construct the χ2 function χ2

1 for the first iteration as

χ2
1 =

Ntot∑
i=1

Ntot∑
j=1

(R(m)
i − R

i
m)C−1

1 (i(m), j(n))(R(n)
j − R

j
n) , (21)

Flavour changing and conserving processes

where Ntot is the total number of data points. Ri
m is the in-

terpolant cross section as a function of Rm (see Eq. (19)),
and C−1

1 is the inverse matrix of the covariance matrix C1
for the first iteration, which is given as the sum of the sta-
tistical covariance matrix Cstat(i(m), j(n)) and the systematic
covariance matrix Csys(i(m), j(n)),

C1(i(m), j(n)) = Cstat(i(m), j(n)) +
Csys(i(m), j(n))

R(m)
i R(n)

j

Ri,0
m R

j,0
n ,

(22)

where Ri,0
m is a linearly interpolated cross section value de-

termined by using Eq. (16) as input to Eq. (19). We call
the Rm values which minimise the function χ2

1 as Rm = R1
m,

which are used for the input to the next turn of the itera-
tions. From R1

m, we calculate the interpolant values Ri
m by

substituting Rm = R1
m in Eq. (19), and call the output val-

ues of Ri
m as Ri,1

m . We now construct the covariance matrix
C2 by

C2(i(m), j(n)) = Cstat(i(m), j(n)) +
Csys(i(m), j(n))

R(m)
i R(n)

j

Ri,1
m R

j,1
n ,

(23)

and construct the χ2 function for the second iteration χ2
2 as

χ2
2 =

Ntot∑
i=1

Ntot∑
j=1

(R(m)
i − R

i
m)C−1

2 (i(m), j(n))(R(n)
j − R

j
n) , (24)

where Ri
m is the interpolant cross section as a function of

Rm. We find the set of Rm which minimises χ2
2, which we

call R2
m. Similarly, we construct the χ2 function for the I-th

iteration as

χ2
I =

Ntot∑
i=1

Ntot∑
j=1

(R(m)
i − R

i
m)C−1

I (i(m), j(n))(R(n)
j − R

j
n) , (25)

where Ri
m is the interpolant cross section as a function of

Rm, and

CI(i(m), j(n)) = Cstat(i(m), j(n)) +
Csys(i(m), j(n))

R(m)
i R(n)

j

Ri,I−1
m R j,I−1

n .

(26)

We refer to the set of Rm which minimises χ2
I as RI

m. In this
way, we repeat this procedure until we reach convergence.
In our case, convergence is achieved after only a few steps.

We should note here that since all the χ2 functions
Eqs. (21), (24) and (25) are quadratic functions of Rm, and
hence do not introduce a bias [29]. We have also checked
that the result of the HLMNT analysis does not change
very much even if we adopt the new iterative χ2 minimi-
sation algorithm.

3.4 Result for LO Hadronic VP Contribution to aµ

By using the new data input and the new data combina-
tion algorithm, we obtain Eq. (8) for ahad, LO VP

µ . A similar
result has been obtained in Ref. [30], although there are

slight differences in some individual channels. Ref. [31]
quotes slightly smaller value for ahad, LO VP

µ .
Once the ahad, LO VP

µ is calculated, we can instantly
compute ahad, NLO VP

µ since we have only to evaluate similar
dispersion relations. Our result for ahad, NLO VP

µ is Eq. (8).
When combined with other SM contributions to aµ such as
the QED contribution, we obtain Eq. (2). The difference
∆aµ between the experimental determination Eq. (1) and
the SM prediction (2) is

∆aµ = aµ(exp) − aµ(SM) = (27.05 ± 7.26) × 10−10 ,
(27)

which could be due to a contribution from new physics
beyond the SM.

4 Hadronic Contributions to QED
Coupling at the Z-pole

Another closely related quantity is the 5-flavour quark
contributions ∆α(5)

had(M2
Z) to the running QED coupling at

the Z-pole, α(M2
Z). α(M2

Z) is related to ∆α(5)
had(M2

Z) by the
relation,

α(M2
Z) =

α

1 − ∆αlep(M2
Z) − ∆α(5)

had(M2
Z) − ∆αtop(M2

Z)
,

(28)

where ∆αlep(M2
Z) and ∆αtop(M2

Z) are the leptonic and top-
quark contributions, respectively. While the leptonic and
top-quark contributions can be evaluated perturbatively, to
evaluate ∆α(5)

had(M2
Z), we have to rely on the dispersion re-

lation,

∆α(5)
had(M2

Z) = −
αM2

Z

3π
P
∫ ∞

sth

ds
R(s)

s(s − M2
Z)
. (29)

Fortunately, this integral can be evaluated by using the
same R-ratio data as used in the evaluation of ahad, LO VP

µ .
By a similar analysis as in the case of ahad, LO VP

µ , we
obtain

∆α(5)
had(M2

Z) = (276.11 ± 1.11) × 10−4 . (30)

The contributions from major channels are given in Ta-
ble 2.

The value of the leptonic contributions is calculated up
to and including 4-loop order in Ref. [32], which quotes
the value,

∆αlep(M2
Z) = (314.979 ± 0.002) × 10−4 . (31)

The top-quark contribution is computed in Refs. [33, 34]
and the current value is

∆αtop(M2
Z) = (−0.7180 ± 0.0054) × 10−4 , (32)

where we have used the values αs(MZ) = 0.1182(12) [3]
and mt = 173.1±0.6 GeV [3] as input parameters. By sub-
stituting Eqs. (30), (31) and (32) into Eq. (28), we obtain

α−1(M2
Z) = 128.946 ± 0.015 . (33)
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5 Conclusions

We have evaluated the LO and NLO hadronic VP con-
tributions to the muon g − 2. By using the latest ex-
perimental data for e+e− → hadrons as input, we ob-
tain the values ahad, LO VP

µ = (693.27 ± 2.46) × 10−10 and
ahad, NLO VP
µ = (−9.82 ± 0.04) × 10−10, respectively. When

combined with other contributions to the SM prediction,
we obtain aµ(SM) = (11659182.05 ± 3.56) × 10−10 ,
which is deviated from the experimental value by ∆aµ =
aµ(exp) − aµ(SM) = (27.05 ± 7.26) × 10−10 . This means a
3.7 σ discrepancy between the experimental value and the
SM prediction. This could be due to a contribution from
new physics beyond the SM.

We have discussed another closely related quantity, the
running QED coupling at the Z-pole, α(M2

Z), as well. By
using the same e+e− → hadrons data as input, our result
for the 5-flavour quark contribution to the running QED
coupling at the Z pole is ∆α(5)

had(M2
Z) = (276.11 ± 1.11) ×

10−4, from which we obtain α−1(M2
Z) = 128.946 ± 0.015.
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