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Abstract. We present a new event generator based on the three-fluid hydrodynamics
(3FH) approach, followed by a particlization at the hydrodynamic decoupling surface
and a subsequent UrQMD afterburner stage based on the microscopic UrQMD transport
model that accounts for hadronic final state interactions. First results for Au+Au colli-
sions are presented. The following topics are addressed: the directed flow, transverse-
mass spectra, as well as rapidity distributions of protons, pions and kaons for two model
equations of state, one with a first-order phase transition, the other with a crossover tran-
sition. Preliminary results on the femtoscopy are also discussed.We analyze the accuracy
of reproduction of the 3FH results by the new event generator and the effect of the subse-
quent UrQMD afterburner stage.

1 Introduction

The onset of deconfinement in relativistic heavy-ion collisions and the search for a critical endpoint is
now in the focus of theoretical and experimental studies of the equation of state (EoS) and the phase
diagram of strongly interacting matter. This challenge is one of the main motivations for the cur-
rently running beam-energy scan (BES) at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL) [1] and at the CERN Super-Proton-Synchrotron (SPS) [2] as well as for
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constructing the Facility for Antiproton and Ion Research (FAIR) in Darmstadt [3] and the Nuclotron-
based Ion Collider fAcility (NICA) in Dubna [4].

Three-fluid hydrodynamics (3FH) [5] was designed to simulate heavy-ion collisions at moderately
relativistic energies, i.e. precisely in the energy range of the expected onset of deconfinement. In
recent years applications of 3FH demonstrated a strong preference of deconfinement scenarios for
the explanation of available experimental data [6–13]. However, up to now 3FH has been facing
certain problems. From the theoretical side, the model lacks an afterburner stage that can play an
important role for some observables. From the practical point of view, the model was not well suited
for data simulations in terms of experimental events, because the model output consisted of fluid
characteristics rather than of a set of observable particles.

In this contribution, we present a new Three-fluid Hydrodynamics-based Event Simulator Ex-
tended by UrQMD final State interactions (THESEUS) [14] and its application to the description
of heavy-ion collisions in the FAIR-NICA-SPS-BES/RHIC energy range. This simulator provides
a solution to both the above-mentioned problems. It presents the 3FH output in terms of a set of
observed particles and the afterburner can be run starting from this output by means of the UrQMD
model [15, 16]. Thus THESEUS as a new tool allows to discuss the multifaceted physics challenges
at FAIR-NICA-SPS-BES/RHIC energies. The new simulation program has the unique feature that
it can describe a hadron-to-quark matter transition of the first order which proceeds in the baryon
stopping regime that is not accessible to previous simulation programs designed for higher energies.
Besides this, with THESEUS one can address practical questions like the influence of hadronic final
state interactions and of the detector acceptance, which are necessary to focus on important physics
questions. These deal with a potential discovery and investigation of the first-order phase transition
line, where during a heavy-ion collision the EoS reaches its softest point [17]. It remains an open
question how this characteristic feature of the EoS manifests itself in observables such as flow, proton
rapidity distributions and femtoscopic radii. Particular emphasis is on the robustness of the "wiggle"
[18] in the energy scan of the midrapidity curvature of the proton rapidity distribution that has been
suggested as a possible signal for a first order phase transition, expected just in the range of energies
at NICA and FAIR experiments.

At present THESEUS is not an integrated approach. The simulation proceeds in two steps: first,
a numerical solution of the 3-fluid hydrodynamics is computed with the corresponding code. Based
on the output of the hydrodynamic part, a Monte Carlo procedure is used to sample the ensemble of
hadron distributions and the UrQMD code is engaged to calculate final state hadronic rescatterings, as
will be explained below. Another present limitation which we leave for future work is the absence of
event-by-event hydrodynamic evolution. Therefore later by an event we mean a Monte Carlo sampled
set of final hadrons, which correspond to the same (average) hydrodynamic evolution.

2 Description of the event generator THESEUS

2.1 The 3FH model

The 3FH model treats the collision process from the very beginning, i.e. from the stage of cold nuclei,
up to the particlization from the fluid dynamics. This model is a straightforward extension of the
two-fluid model with radiation of direct pions [19, 20] and of the (2+1)-fluid model of Refs. [21, 22].
The 3-fluid approximation is a minimal way to simulate the finite stopping power at the initial stage
of the collision. Within the 3-fluid approximation a generally nonequilibrium distribution of baryon-
rich matter is simulated by counter-streaming baryon-rich fluids initially associated with constituent
nucleons of the projectile (p) and target (t) nuclei. Therefore, the initial conditions for the fluid
evolution are two Lorentz contracted spheres with radii of corresponding nuclei and zero diffuseness,
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baryon density nB = 0.15 fm−3 and energy density mNnB � 0.14 GeV/fm3. In addition, newly
produced particles, populating the mid-rapidity region, are associated with a fireball (f) fluid. Each
of these fluids is governed by conventional hydrodynamic equations. The continuity equations for the
baryon charge read

∂µJ
µ
α(x) = 0, (1)

for α =p and t, where Jµα = nαu
µ
α is the baryon current defined in terms of proper (i.e. in the local

rest frame) net-baryon density nα and hydrodynamic 4-velocity uµα normalized as uαµu
µ
α = 1. Eq. (1)

implies that there is no baryon-charge exchange between p-, t- and f-fluids, as well as that the baryon
current of the fireball fluid is identically zero, Jµf = 0, by construction. Equations of the energy–
momentum exchange between fluids are formulated in terms of energy–momentum tensors T µνα of the
fluids

∂µT
µν
p (x) = −Fνp(x) + Fνfp(x), (2)

∂µT
µν
t (x) = −Fνt (x) + Fνft(x), (3)

∂µT
µν
f (x) = −Fνfp(x) − Fνft(x) +

∫
d4x′δ4

(
x − x′ − UF(x′)τ f

) [
Fνp(x′) + Fνt (x′)

]
, (4)

where the Fνα are friction forces originating from inter-fluid interactions. Fνp and Fνt in Eqs. (2)–(3)
describe energy–momentum loss of the baryon-rich fluids due to their mutual friction. A part of this
loss |Fνp − Fνt | is transformed into thermal excitation of these fluids, while another part (Fνp + Fνt ) gives
rise to particle production into the fireball fluid (see Eq. (4)). Fνfp and Fνft are associated with friction
of the fireball fluid with the p- and t-fluids, respectively. Here τ f is the formation time, and

UνF(x′) =
uνp(x′) + uνt (x′)

|up(x′) + ut(x′)| (5)

is the 4-velocity of the free propagation of the produced fireball matter. In fact, this is the velocity
of the fireball matter at the moment of its production. According to Eq. (4), this matter gets formed
only after the time span U0

Fτ f upon the production, and in a different space point x′ − UF(x′) τ f , as
compared to the production point x′. The friction between fluids was fitted to reproduce the stopping
power observed in proton rapidity distributions for each EoS, as it is described in Refs. [5, 6] in detail.

Different equations of state (EoS) can be applied within the 3FH model. The recent series of
simulations [6–13] was performed employing three different types of EoS: a purely hadronic EoS
[23] (hadr. EoS) and two versions of the EoS involving deconfinement [24]. The latter two versions
are an EoS with a first-order phase transition (2-phase EoS) and one with a smooth crossover transition
(crossover EoS). Figure 1 illustrates the differences between the three considered EoS.

An application of the 3FH model is illustrated in Fig. 2 where the evolution of the proper (i.e.
in the local rest frame) baryon density in the reaction plane is presented for a semi-central (impact
parameter b = 6 fm) Au+Au collision at

√
sNN = 6.4 GeV (Elab = 20 A GeV). The simulation was

performed with the crossover EoS without freeze-out. As can be seen from that figure, very high
baryon densities are reached in the central region of the colliding system.

The freeze-out criterion used in the 3FH model is ε < εfrz, where ε is the total energy density of
all three fluids in their common rest frame. More details can be found in Refs. [25, 26] The freeze-
out energy density εfrz = 0.4 GeV/fm3 was chosen mostly on the condition of the best reproduction
of secondary particle yields for all considered scenarios, see [5]. An important feature of the 3FH
freeze-out is an antibubble prescription, preventing the formation of bubbles of frozen-out matter
inside the dense matter while it is still hydrodynamically evolving. The matter is allowed to be frozen
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) Figure 1. Pressure scaled by the product of normal nuclear density (n0 =

0.15 fm−3) and nucleon mass (mN) versus baryon density scaled by the
normal nuclear density for three considered equations of state. Results
are presented for three different temperatures T = 10, 100 and 200 MeV
(from bottom upwards for corresponding curves).

Figure 2. Evolution of the proper baryon density (nB/n0) scaled by the the normal nuclear density (n0 =

0.15 fm−3) in the reaction plane for a semi-central (b = 6 fm) Au+Au collision at
√

sNN = 6.4 GeV.

out only if it is located near the border with the vacuum (this piece of matter gets locally frozen out).
The thermodynamic quantities of the frozen-out matter are recalculated from the in-matter EoS, with
which the hydrodynamic calculation runs, to the hadronic gas EoS1. This is done because a part of the
energy is still accumulated in collective mean fields at the freeze-out instant. This mean-field energy
needs to be released before entering the hadronic cascade in order to facilitate energy conservation.

The output of the model is recorded in terms of Lagrangian test particles (i.e. fluid droplets) for
each fluid α (= p, t or f). Each particle contains information on space-time coordinates (t, x) of the
frozen-out matter, proper volume of the test particle of the α fluid (Vpr

α ), hydrodynamic velocity (uµα)
in the frame of computation, temperature (Tα), baryonic (µBα) and strange (µSα) chemical potentials.

2.2 Particlization

In the multi-fluid approach one simulates the heavy ion collision from its very first moment using
fluid dynamics. However, once the system becomes too dilute, the fluid approximation loses its ap-
plicability and individual particles are the relevant degrees of freedom. The process of changing from
a fluid to a particle description is called "particlization" [27]. Since we supplement the 3FH with a
hadronic cascade, the particlization is not freeze-out anymore. By definition there are only resonance
decays after freeze-out, whereas in the present generator final state hadronic rescattering processes
are simulated as well using the UrQMD code.

1In this gas EoS 48 different hadronic species are taken into account. Each hadronic species includes all the relevant isospin
states; e.g., the nucleon species includes protons and neutrons.
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The particlization criterion is chosen to be the same as freeze-out criterion in [5], e.g.,

εtot < εfrz,

where εtot is defined as:
εtot = T ∗00

p + T ∗00
t + T ∗00

f

and the asterisk denotes a reference frame where the nondiagonal components of the total energy
momentum tensor are zero. This choice allows to study the influence of hadronic rescatterings to the
observables by comparing them with the ones calculated in previous 3-fluid hydrodynamic models.

For the details of fluid to particle conversion the reader is referred to [5], whereas here we repeat
the details important for the construction of the Monte Carlo sampling procedure. Both the baryon-
rich projectile and target fluids as well as the fireball fluid are being frozen out in small portions,
therefore the output of the particlization procedure is a set of droplets (or surface elements). Each
droplet is characterized by its proper volume Vpr, temperature T , baryon, µB, strange chemical poten-
tials µS, and the collective flow velocity uµ.

The thermodynamic parameters of the droplets correspond to a free hadron resonance gas. There-
fore, we proceed with sampling the hadrons according to their phase space distributions (see Eq. (33)
in [5]), which are expressed in the rest frame of the fluid element (FRF) as

p∗0
d3Ni

d3p∗
=
∑
α

giV
pr
α

(2π)3

p∗0

exp
[
(p∗0 − µαi)/Tα

] ± 1
(6)

where the asterisk denotes momentum in the fluid rest frame, where u∗µα = (1, 0, 0, 0), µαi = Bi · µαB +

S i ·µαS is the chemical potential of hadron i with baryon number Bi, strangeness S i, degeneracy factor
gi, and the α summation runs over droplets from all (p, t and f) fluids.

The use of temperature and chemical potentials implies a grand canonical ensemble for each
surface element. The sampling is therefore organized as a loop over all droplets, every iteration of
which consists of the following steps [28, 29]

• average multiplicities of all hadron species are calculated according to

∆Ni,α = Vpr
α ni,th(T, µi), (7)

together with their sum ∆Ntot,α =
∑

i ∆Ni,α;

• total (integer) number of hadrons from each surface element is sampled according to Poisson dis-
tribution with mean ∆Ntot,α. If the number is greater than zero, sort of hadron is randomly chosen
based on probabilities ∆Ni,α/∆Ntot,α;

• hadron’s momentum in FRF p∗ is sampled according to (6), which is isotropic in momentum space;

• momentum vector is Lorentz boosted to the global frame of the collision.

In the present version of the generator, also from the arguments of consistency with preceding hydro-
dynamic evolution, we do not apply any corrections over the grand canonical procedure to account
for effects of charge or energy conservation. Therefore, particle multiplicities fluctuate from event to
event according to the composition of grand canonical ensembles given by the individual droplets.

2.3 UrQMD simulation of final state interactions

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach [15, 16] treats hadrons and
resonances up to a mass of ∼ 2.2 GeV. All binary interactions are treated via the excitation and decay
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of resonances or string excitation and decay and elastic scatterings. It is crucial for a state-of-the-art
event generator to treat the interactions during the late non-equilibrium hadronic stage of heavy ion
reactions properly. At RHIC and LHC notable differences in the proton yields have been observed
and the identified particle spectra and flow observables show an effect of the hadronic rescattering
(for a review of hybrid approaches see [30]). At lower beam energies as they are investigated in this
work, the hadronic stage of the reaction is of utmost importance. In [31] it has been shown, that the
excitation function of elliptic and triangular flow can only be understood within a combined hydro-
dynamics+transport approach. UrQMD constitutes an effective solution of the relativistic Boltzmann
equation and therefore provides access to the full phase-space distribution of all individual particles
at all times. In this work the effect of hadronic rescattering in the final state on the identified particle
spectra and the rapidity dependent directed flow is demonstrated in detail.

3 Results

In this section we present a selection of first results from THESEUS for the energy scan (
√

sNN =

4 − 11 GeV) planned at the NICA-MPD collider experiment, which has overlap with the FAIR-SPS-
BES/RHIC energy range.
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Figure 3. Transverse momentum spectrum for pions (left panel) and kaons (right panel) for central Au+Au
collisions (b = 2 fm) at Elab = 30 A GeV for the 2-phase EoS. Comparison between results from the 3FH model
(black solid lines) and THESEUS without UrQMD (red dashed lines) show excellent agreement. Comparing
these results with the full THESEUS result (green dashed line) shows that the UrQMD hadronic rescattering
leads to a slight steepening of the pion pT spectrum.

3.1 Tests of the particlization routine: Spectra of pions, kaons and protons

We start by showing the transverse momentum distributions of pions [(π+ + π0 + π−)/3] and kaons
[(K++K0)/2] in Fig. 3. They are calculated from a sample of 30000 events generated according to the
Monte Carlo procedure described above, and are compared in the plot to direct integration according to
Eq. (6) and inclusion of resonance decay contributions performed in the basic 3FH part of THESEUS
(the afterburner is turned off for this comparison). The 3FH evolution simulates Au+Au collisions
at Elab = 30 A GeV with the two-phase EoS. We observe excellent agreement up to pT = 2.2 GeV,
which is limited by the generated event statistics. In Fig. 4 we show the rapidity distributions for the
same setup. The rapidity distributions reveal a small difference in kaon yields, and an even smaller
one for pions, which is attributed to differences in the large mass sector of the resonance tables and
branching ratios between 3FH and THESEUS. Nevertheless, the shapes of rapidity distributions agree
beautifully. In Figs. 3 and 4 we show also the effect of the UrQMD hadronic final state interactions
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one for pions, which is attributed to differences in the large mass sector of the resonance tables and
branching ratios between 3FH and THESEUS. Nevertheless, the shapes of rapidity distributions agree
beautifully. In Figs. 3 and 4 we show also the effect of the UrQMD hadronic final state interactions
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Figure 4. Rapidity distribution for pions (left panel) and kaons (right panel) for central Au+Au collisions (b =
2 fm) at Elab = 30 A GeV for the 2-phase EoS. Comparison between results from the 3FH model (black solid
lines) and THESEUS without UrQMD (red dashed lines) show excellent agreement. Comparing these results
with the full THESEUS result (green dashed line) shows that the UrQMD hadronic rescattering smeares out the
double-peak structure in the kaon rapidity spectrum.

which are included in THESEUS. They lead to a slight steepening of the pT spectrum for pions and
to a reduction of the double-peak structure in the kaon rapidity spectrum. Both are sufficiently gentle
effects to not spoil our conclusion. The tests demonstrate that both the procedure of particle sampling
at particlization and the resonance decay kinematics are implemented correctly.

3.2 Directed flow of protons and pions

Next we test whether more subtle features of particle distributions are preserved by the particlization
procedure and how they are affected by the hadronic cascade. First we calculate the directed flow
coefficient v1 for pions and protons as a function of rapidity using the reaction plane method

v1(y) = 〈cos(φ − ΨRP)〉 =
〈

px/
√

p2
x + p2

y

〉
,

where ΨRP = 0 in the model, since the impact parameter is always directed along x-axis. Although
the generator makes it possible to apply different methods of flow analysis over generated events,
we use the reaction plane method in order to perform a one-to-one comparison between results from
THESEUS with and without UrQMD and the corresponding ones from the basic 3FH model.

We present the results of THESEUS with and without UrQMD afterburner for the directed flow
v1 of protons and pions at Elab = 8 A GeV (Fig. 5) and 30 A GeV (Fig. 6), comparing the case of the
2-phase EoS (first order phase transition, upper panels) with that of the crossover EoS (lower panels)
at central (left panels), semicentral (middle panels) and peripheral (right panels) Au+Au collisions.
Dashed lines show the results from THESEUS without hadronic cascade, where we quantitatively
reproduce the results from basic 3FH model.

This figure shows the influence of hadronic final state interactions on the patterns of directed flow
of protons and pions in the the broad rapidity range −1.5 < y < 1.5 and how it evolves from low
energies to high energies. At Elab = 8 A GeV in Fig. 5 we observe that hadronic rescattering causes
the transition from flow to antiflow for pions due to the shadowing by a dense baryonic medium. The
flow of protons is not affected by the hadronic rescattering, which remains so for all energies. The
shadowing effect on the pion directed flow becomes less important at higher energies. At 30 A GeV
hadronic rescattering has no effect on the directed flow of pions in the central rapidity region.
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Figure 5. Two upper rows:
Directed flow (v1) of protons
(full symbols) and pions
(open symbols) for central
(b = 2 fm), semicentral
(b = 6 fm) and peripheral
(b = 11 fm) Au+Au
collisions at Elab = 8 A GeV.
The upper row is for the
2-phase EoS while the lower
row shows results for the
crossover EoS. In each panel
we show the direct
comparison of THESEUS
with (blue symbols) and
without (red symbols)
UrQMD afterburner.
Remarkable is the effect of
turning pion flow to antiflow
due to hadronic rescattering
in the dense baryonic
medium.

Figure 6. Same as in Fig. 5
but for Elab = 30 A GeV.

This behaviour can be understood as follows. If there is only hydrodynamics, the pions are emitted
along the fluid flow, while when there is rescattering they are blocked by the baryonic matter in the
projectile and target region, therefore the anti-flow appears. This effect was first demonstrated in
Ref. [15]. This effect of the pion shadowing is more spectacular in Fig. 5 where the directed flow of
protons and pions at Elab = 8 A GeV is presented. As seen, the proton v1 is practically insensitive
to the UrQMD afterburner, while the pion v1 is strongly affected by this afterburner. The afterburner
even changes the pion v1 flow to an antiflow. The effect of the pion shadowing becomes weaker with
the collision energy rise, as it is seen at Elab = 30 A GeV, because the midrapidity region becomes
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less baryon abundant. Though, at larger collision energies and peripheral rapidities, this shadowing is
still noticeable. This shadowing results in better agreement with the STAR data on pion v1 [33].

There is hardly any difference to be noticed in the pion directed flow patterns between the case of
a 2-phase EoS and a crossover EoS.

Figure 7. Energy scan for the curvature Cy of the net proton rapidity
distribution at midrapidity for central Au+Au collisions with impact
parameter b = 2 fm. We compare the 3FH model result (black solid lines)
with THESEUS (blue short-dashed lines) and THESEUS without UrQMD
(red long-dashed lines). The results for the two-phase EoS (upper row) are
compared to those for the crossover EoS (lower row). The "wiggle" as a
characteristic feature for the EoS with a first order phase transition is rather
robust against hadronic final state interactions. Data from AGS experiments
are shown by filled squares, data from NA49 by filled triangles.

3.3 Baryon stopping signal for a first-order phase transition

In Fig. 7 we show the reduced curvature of the net proton rapidity distribution Cy =

y2
cm(d3Nnet−p/dy3)/(dNnet−p/dy), where ycm is the rapidity of the center of mass of the colliding system

in the frame of the target [18, 35, 36]. Because of a narrower collision energy range chosen here, we
observe only the peak-dip part of the so-called “peak-dip-peak-dip” structure reported in [18, 35, 36].
The reduced curvature is calculated by fitting the rapidity distribution with a 2nd order polynomial of
the form P2(y) = ay2 + by + c for which then Cy = y2

beam2a/c results.
Contrary to the basic 3FH model which can calculate Cy with any given precision, in the Monte

Carlo procedure the accuracy depends on the event statistics and binning. A reliable determination
of Cy requires not less than 104 events for central and semi-central collisions and 105 events for
peripheral collisions. Larger required statistics for peripheral events is a consequence of the lower
average event multiplicity.

The robustness of the baryon stopping signal for a first-order phase transition against experimental
cuts in the pT acceptance has been discussed in [18]. It is found that the baryon stopping signal is
robust against hadronic rescattering.

3.4 Preliminary results on femtoscopy

Correlation femtoscopy allows one to measure the space-time characteristics of particle production
in relativistic heavy-ion collisions due to the effects of quantum statistics and final state interactions.
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Figure 8. Comparison of results of the THESEUS without UrQMD afterburner on femtoscopy radii with those
measured by the STAR collaboration at

√
sNN = 7.7 GeV (opened squares). Triangles correspond to different

types of EoS: the two-phase EoS (reversed triangles) and the crossover EoS (triangles).

Figure 9. The same as in Fig. 8 but with the UrQMD afterburner.

The femtoscopy was intensively studied at AGS and SPS accelerators and is being studied now at
the BES/RHIC in the context of exploration of the QCD phase diagram. In this contribution we
present preliminary results on femtoscopy observables for central Au-Au collisions at

√
sNN = 7.7

GeV calculated by means of the event generator THESEUS.
The femtoscopic analysis within THESEUS was performed very similarly to that described in Ref.

[37]. A two-pion correlation function is fitted by the conventional Gaussian form

C(q) = N[1 + λ exp(−R2
out q2

out − R2
side q2

side − R2
long q2

long)] (8)
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where q = p1 − p2 with p1 and p2 being three-momenta of two considered particles, N is the nor-
malization factor and λ is the correlation strength parameter, which can differ from unity due to the
contribution of long-lived emitters and a non-Gaussian shape of the correlation function; Rout, Rside

and Rlong are the Gaussian femtoscopy radii in the in the longitudinally co-moving system (LCMS),
where the longitudinal pair momentum vanishes.

Preliminary results on Rout, Rside and Rlong as functions of the transverse mass of the particles,
mT =

√
(p1 + p2)2/4 + mπ, for central Au-Au collisions at

√
sNN = 7.7 GeV simulated by means of

THESEUS without the UrQMD afterburner are presented in Fig. 8. The corresponding experimental
data [38] are also displayed in Fig. 8. As seen, the femtoscopy radii are strongly underestimated
without the afterburner stage.

Figure 9 demonstrates these radii after the afterburner stage. Now these radii are already in a
reasonable agreement with the STAR data. The Rout/Rside ratio is even in a very good agreement
with the data. An unexpected result is that the femtoscopy radii turn out to be very close within the
first-order-transition and crossover scenarios. The analysis of the femtoscopy observables is still in
progress.

4 Conclusions

We have assembled the new event generator THESEUS that is based on a three-fluid hydrodynamics
description of the early and dense stages of the collision, followed by a particlization as input to the
UrQMD "afterburner" accounting for hadronic final state interactions. The new simulation program
has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the
baryon stopping regime that is not accessible to previous simulation programs that are designed for
higher energies.

We presented first results from THESEUS for the FAIR-NICA-SPS-BES/RHIC energy scan ad-
dressing the directed flow of protons and pions as well as the rapidity distribution of protons, pions
and kaons for two model EoS, one with a first order phase transition, the other with a crossover type
softening at high densities. Preliminary results on the femtoscopy are also discussed. Another impor-
tant application of THESEUS, not discussed in the present contribution, is prediction of the directed
flow of deuterons in semicentral Au+Au collisions in the NICA energy range [39]. In Ref. [39] it
is argued that light clusters are unique rare probes of in-medium characteristics such as phase space
occupation and early flow.

We have found that the hadronic cascade which is switched on after the particlization has little
effect on the proton flow observables and on the predicted baryon stopping signal for a first-order
phase transition in heavy-ion collisions at NICA/FAIR energies. However, for pions in non-central
collisions at lower energies the hadronic cascade leads to a qualitative change of the emission pattern
(from flow to antiflow). The femtoscopy observables are strongly affected by the afterburner stage.
The preliminary analysis of the femtoscopy radii manifested their reasonable agreement with the
STAR data.
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