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Abstract. The status is reviewed of the lattice studies of confinement by dual
superconductivity of QCD vacuum. Progress is made by proving that the exis-
tence and the creation of a monopole are gauge invariant concepts. This proof
fully legitimates an existing order parameter, and with it the evidence it provides
of monopole condensation in the confining vacuum.

1 Introduction

Quarks are strictly confined in nature. No free quark has ever been observed neither in ordi-
nary matter nor in the final state of high energy reactions. This results in upper limits on the
abundance nq of quarks and on the inclusive cross section σq for production of quarks in, say,
proton-proton collisions

Rn ≡
nq

np
≤ 10−27 Rσ ≡

σq

σTOT
≤ 10−15 (1)

Here nq is the abundance of protons, σTOT the total p − p cross section. The expectations for
these numbers would be, if quarks could exist as free particles[1],

Rn ≈ 10−12 Rσ ≈ 1 (2)

The natural explanation of an inhibition factor smaller than 10−15 is that Rn and σq are strictly
zero: confinement is an absolute property protected by some symmetry. As a consequence
the deconfinement transition is a change of symmetry.

The symmetry involved can not be a subgroup of the gauge group, since the order param-
eter has to be gauge invariant [2]. A hint for the nature of this symmetry is provided by the
following argument. Let UG(�x) be a time-independent transformation of the gauge group on
a system of fields. In general

UG(�x) = U(�x)UB(�x) (3)

where U(�x) is the usual gauge transformation acting on the bulk of the system, which is
trivial [ U(�x) = 1 ] on the surface S 2 at spatial infinity. UB(�x) is instead trivial [ UB(�x) = 1]
everywhere except on S 2.

If all the fields vanish on S 2 UB(�x) is irrelevant and can be put equal to 1 and UG reduces
to U(�x), the usual gauge transformation. It is instead relevant if there are degrees of freedom
living on S 2. These degrees of freedom can produce a gauge invariant change of symmetry.
Living on a sphere they can have non trivial topology.
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The natural topological excitations in 3 spatial dimensions are monopoles, defined by the
mapping S 2 → S U(2). Vortices would be the natural excitations in 2 spatial dimensions with
a mapping S 1 → U(1).

The above argument supports the idea that confinement be produced by dual supercon-
ductivity of the vacuum [3] [4]. Dual means that electric and magnetic are interchanged with
respect to ordinary superconductors. Monopoles condense in the QCD vacuum in the same
way as Cooper pairs do in ordinary superconductors, and quarks are confined by Abrikosov
chromo-electric flux tubes in the same way as magnetic charges are confined by magnetic
flux tubes in ordinary superconductors.

Lattice is a convenient non perturbative tool to explore large distance properties of QCD
like confinement, for which the perturbative expansion fails. In particular monopoles have
been extensively studied on lattice to verify the mechanism of confinement by dual super-
conductivity of the vacuum, proposed in [3] [4], and further developed in [5]. Two main
strategies have been used to that purpose

1) Define an operator µ(�x) which creates a monopole in the point �x and use its vacuum
expectation value 〈µ〉 ≡ 〈0|µ|0〉 as the order parameter for dual superconductivity of vacuum
[6] [7][8][9][10][11].

2) Detect monopoles in lattice configurations and determine the constraint effective poten-
tial of their field. A minimum at non zero field signals dual superconductivity of the vacuum
[12].

Both approaches look for a change of symmetry at the deconfinement transition. Both
have to choose a U(1) subgroup of the gauge group in which monopoles live, which is named
Abelian Projection (AP) . A natural AP exists in the Higgs model in which monopoles were
originally discovered [13][14], and is the unitary representation in which the Higgs field Φ is
diagonal. Monopoles sit at the zeroes of Φ.[See Sect. 2 below]

In QCD there is no fundamental Higgs field. A possibility could be that any operator in
the adjoint representation can act as effective Higgs field [5], and its zeroes as locations of the
monopoles. Somehow physics should be independent on the specific choice of the operator
[5].

Following this suggestion the operator µ(�x) of strategy 1) was defined and developed in
Ref [8][10] using the simplest choice for the colour orientation of the effective Higgs field,
the nominal 3-direction used in the numerical updating procedure.

As for strategy 2) what one needs is a reliable way to detect monopoles in lattice config-
urations in order to determine numerically from them the effective potential. The way this is
done is by measuring the magnetic flux of the abelian field in the colour direction of the ef-
fective Higgs field: excess of magnetic flux through a plaquette is interpreted as Dirac string
of a monopole[15]. If one repeats this game in different abelian projections and compares,
the result is rather disturbing: the number and the location of monopoles strongly depend on
the abelian projection. The existence of a monopole seems to be a gauge dependent concept.

In this paper we discuss these issues and in particular we show that the existence or
the creation of a monopole is a gauge invariant, AP independent concept [Sect. 2]. This
legitimates the construction of 〈µ〉 used to implement strategy 1) and the idea that all choices
for effective Higgs field are equivalent [5].

As for strategy 2) we discuss in some detail the operators in the theory which could act
as effective Higgs fields in the sense of Ref [5]. The result is that a key role is played by the
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temporal component �A4 = i�A0 of the gauge field in the gauge ∂4 �A4 = 0, i.e. the AP in which
the Polyakov line is diagonal.

An intrinsic difficulty in the method is to detect monopoles in the confined phase, in which
the magnetic field is shielded, the magnetic photon being massive [Sect. 3].

Regarding the AP dependence of the monopoles observed in lattice configurations we
argue that it is due to discretisation artefacts in the procedure used to detect monopoles on
the lattice. This is discussed in Sect.3. Sect 4 contains some concluding remarks.

A copious literature exists on monopoles in QCD based on the concept of dominance, i.e.
on the demonstration that removing somehow the monopoles from the lattice configurations
removes confinement [16] [17]. In this optics some abelian projection (Maximal Abelian
Gauge) looks better than others, with less lattice artefacts. We do not consider this approach
relevant to understand the symmetry governing confinement.

2 Monopoles in Non-Abelian Gauge Theories

Monopoles were discovered as solitons in the broken phase of the S U(2) Higgs model with
the scalar field �Φ in the adjoint representation [13][14]. The Lagrangian is

L = −1
4
�Gµν �Gµν +

1
2

Dµ�ΦDµ�Φ −
m2

2
�Φ�Φ − λ

4
(�Φ�Φ)2 (4)

The monopole solution has the form

Φa = ρ
xa

|�x|H(ξ), Aa
0 = 0, Aa

i = −
1
gx2 εiabxb[1 − K(ξ)] (5)

Here ξ = gρ|�x|, ρ ≡
√

( − m2

λ
) .

H(ξ) and K(ξ) can be determined numerically. In order to have a solution with finite
energy (soliton) they must obey the boundary conditions

K(∞) = 0, K(0) = 1 H(∞) = 1, H(0) = 0 (6)

�Φ has a zero at �x = 0, which is conventionally assumed to be the position of the monopole.
At small |�x|

Φa
�x→0 ≈ constant × xa (7)

At large |�x|
Φa
|�x|→∞ = ρ

xa

|�x| (8)

Eq(8) is a non trivial mapping of the sphere S 2 on S U(2)/U(1) : its winding number is
the magnetic charge.

The unitary gauge, in which �Φ�σ is diagonal (�Φ�σ = |�Φ|σ3) is by definition the AP identi-
fied by Φ. The abelian magnetic field in this gauge B3

k ≡
1
2 εki jF3

i j , (F3
i j ≡ ∂iA3

j − ∂ jA3
i ),

can be given a manifestly gauge invariant form in terms of the ’tHooft tensor Fi j [13] . If we
denote by Φ̂ = �Φ

|�Φ|
is the orientation of �Φ in colour space

Fi j ≡ Φ̂[ �Gi j −
1
g

DiΦ̂ ∧ DjΦ̂] (9)

In Fi j the terms quadratic in the gauge field cancel by construction, linear terms are pro-
portional to a spatial derivative ∂kΦ̂ and vanish in the unitary gauge in which Φ̂ is constant, so



4

EPJ Web of Conferences 192, 00001 (2018)	 https://doi.org/10.1051/epjconf/201819200001
QCD@Work  2018

that only the abelian part of �Gi j is left , Fi j = F3
i j and for the magnetic field B3

k = Bk =
1
2 εki jFi j.

At distances r > 1
ρ

the field �B is that of an abelian magnetic monopole

�B ≈r→∞
1
g

�r
r3 + Dirac − string (10)

We shall choose to put the Dirac string along the positive z-axis z+. This can be done since
the magnetic charge obeys the Dirac quantisation condition and any string crossing space
from side to side is invisible. The magnetic charge M is equal to the magnetic flux through
the Dirac string and is given by

M =
∮

c
Φ̂�Aidxi (11)

with c a closed path on S 2 encircling z+. Indeed, by use of Stokes theorem, in the unitary
gauge where �∇Φ̂a = 0, M =

∫
S d�σΦ̂a�∇ ∧ (�Aa) =

∫
S d�σ�B. S is a surface which has c as

border, and is thus pierced by the Dirac string.
M is gauge invariant in the sense that M′ =

∮
c Φ̂
′ �A′idxi = M . Indeed if Φ̂′ = RΦ̂ and

�A′i = �Ai +
i
g
R∂iR† ∮

c
Φ̂′ �A′idxi =

∮
c
(Φ̂�Ai +

i
g
Φ̂∂iR†)dxi (12)

The second term in Eq(12) vanishes if R is a global transformation, but also if Φ̂ is constant
i.e. in the unitary representation.

Suppose that two (or more) different fields of the theory both in the adjoint representation,
�Φ and �Φ′ can act as effective Higgs fields and define monopole configurations and let Φ̂ and
Φ̂′ be the corresponding directions in colour space. A transformation R of the gauge group
exists , with non trivial UB Eq.(3), such that on S 2 Φ̂

′ = RΦ̂, and hence also a transformation
R′ which transforms the AP of Φ into the AP of Φ′, which is a global transformation. As
a consequence M = M′: the magnetic charge is AP invariant. Creating a monopole in one
specific AP means creating it in all AP’s.

The argument can be generalized to larger gauge groups G [21][22], where monopoles
live in S U(2) subgroups.

In QCD there is no fundamental Higgs field, but effective Higgs fields can exist allowing
the existence of monopoles. One example is the temporal component �A4 = i�A0 in the Gauge
∂0 �A0 = 0 [18] [19] [20]. We shall discuss this issue in Sect.3. Anyhow the statement that
the magnetic charge is AP invariant is the same no matter if the Higgs field is fundamental or
effective.

This rigorously justifies the simplification used in the strategy 1) by creating the monopole
in the AP defined by the 3-axis used in numerical updates of the configurations [9][10].
However it makes hard to explain the empirical observation made on lattice in strategy 2)
that monopoles defined by different abelian projections look different both in their number
and in their locations.

3 Monopoles in QCD

Monopoles are needed in QCD to produce by condensation the dual superconductivity of the
vacuum, but no fundamental Higgs field exists in the system to produce a non trivial mapping
of S 2 on S U(2) subgroups of the gauge group. A solution to this difficulty proposed in Ref[5]
is that any operator �O in the adjoint representation can act as an effective Higgs field. The
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corresponding AP is the representation in which �O�σ is diagonal, and the zeroes of �O are the
locations of the monopoles. The argument is [5] that in that gauge near the zero

〈 �O�σ〉 ≈ costant × |�x|σ3 (13)

at least if there is invariance under rotations and O is a scalar under space rotations. For a
classical configuration �O = 〈 �O〉 and the behaviour Eq(13) is the same as that of the Higgs
field in the monopole solution Eq(7). Of course the behaviour Eq(7) is a necessary, but not
generally sufficient condition for a monopole solution. The condition Eq(8) must also be
satisfied which expresses the topological nature of monopoles. The effective Higgs field is a
function of the classical gauge fields, transforming in the adjoint representation

Φe f f = Φ(�Aµ) (14)

at least for pure gauge theory ( no quarks).
If we insist in putting �A0 = 0 as in the solution Eq(5) Φe f f only depends on �Ai which

vanishe on S 2, and must have at the same time a constant length on S 2 to satisfy Eq.(8). This
looks impossible.

If instead we allow non zero �A0 the requirement that the solution be static implies

∂0 �A0 = 0 (15)

An obvious possibility for the effective Higgs field is the choice �Φe f f = �A4 = i�A0 . To have
a monopole the boundary conditions Eq(7) and Eq(8) must be satisfied by �A4. This is the
solution of Ref. [18] [19][20].

Of course �A4 on S 2 is the same for all monopoles: this fixes the monopoles which can co-
exist. A detailed discussion is presented in Ref.[22], where the construction is also extended
to S U(N) gauge groups with N > 2.
∂0 �A0 = 0 is a gauge condition. In this gauge the Polyakov line Π(�x) has a simple expres-

sion

Π(�x) ≡ P exp(ig
∫ T

0

�A0(�x, t)
�σ

2
) = exp(i

g

T
�A0(�x)

�σ

2
) (16)

T is the temperature, P indicates time ordered product, which simplifies to ordinary product
if �A0 is time independent.

The gauge in which �A0(�x)�σ is diagonal coincides with that in which the Polyakov line is
diagonal, and has been extensively studied on lattice in connection with confinement.

4 The order parameter

An operator µ(�x, t) which creates a monopole in the location �x at time t is [8]

µ(�x, t) = exp
(
i
∫

d3y�E3
⊥(�y, t)�A0

⊥(�y − �x)
)

(17)

�A0
⊥(�y − �x) is the classical vector potential produced in the point �y by a monopole sitting at

the point �x , in the transverse gauge �∇�A0
⊥ = 0 . It can either be a point magnetic charge with a

Dirac string carrying the flux at infinity , or a Wu-Yang type configuration in which the flux is
carried to infinity by a 2-dimensional surface of singularity. In the convolution in Eq(17) only
the transverse components of the electric field �E3 contribute. �E3 is the (canonical) electric
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field if the theory has gauge group U(1), or its component in the direction 3 of the effective
Higgs field in a AP of non abelian theories.

In any case, no matter how the theory is quantized, �E3
⊥(�y, t) is the canonically conjugate

field to �A3
⊥(�y, t). Therefore, in the same way as for a motion in one dimension

exp(ipa)|x〉 = |x + a〉 (18)

in the Schroedinger representation of the field theory

µ(�x, t)|�A3
⊥(�z, t)〉 = |�A3

⊥(�z, t) + �A0
⊥(�z − �x)〉 (19)

The operator µ(�x, t) adds a monopole to field configurations.
The peculiar dependence on the coupling constant allows to compute 〈µ〉 in a convenient

way [7] [9]. If we normalise the fields as done in lattice formulation the action depends on
the coupling constant as βS , with β ≡ 2N

g2 for gauge group S U(N) and S independent on β
In Eq(17) the electric field is the canonical field, i.e. 1

g
times the field in the lattice

normalisation. An extra factor 1
g

comes from the magnetic charge in the monopole field �A0,
so that finally µ has the form

µ(�x) = exp(−β∆S )

with ∆S = g2

2N
(
i
∫

d3y�E3
⊥(�y, t)�A0

⊥(�y − �x)
)

independent on β.
In the language of Feynman integrals

µ(β) ≡ 〈µ(β)〉 =
∫

dA exp
( − β(S + ∆S )

)
∫

dA exp
( − βS ) =

Z(S + ∆S )
Z(S )

(20)

the ratio of two partition functions. The quantity ρ(β) = d
dβ ln
(〈µ(β)〉) is easily computed

from the expression (20) giving

ρ(β) = 〈S 〉S − 〈(S + ∆S )〉(S+∆S ) (21)

The subscript indicates the action used to perform the average. Since µ(0) = 1

µ(β) = exp
( ∫ β

0
ρ(β′)dβ′

)
(22)

Computing numerically ρ on using the expression (21) presents no difficulty. The expectation
is, if confinement is produced by dual superconductivity, that in the confined phase (β < βc)
ρ stays finite in the infinite volume limit so that µ(β) is different from zero; instead ρ goes
large and negative in the deconfined phase, β > βc so that µ(β) vanishes in the infinite volume
limit. In pure gauge theory there is an independent order parameter for confinement, the
string tension measured from correlators of Polyakov lines, which permits the check.

At the beginning this research program, which was already rigorously checked in the
simple case of gauge group U(1) [7], worked perfectly within the statistical errors for gauge
groups S U(2) and S U(3) [9]. In trying to extend the analysis to G2 gauge group, to test the
general validity of the mechanism a divergence of ρ in the large volume limit showed up,
which would give µ(β) = 0 both below ad above the critical temperature βc[23]. A reanalysis
of the previous work showed that the same disease would appear at large volumes or with
larger statistics ad smaller errors also for the case of S U(2) and S U(3) gauge groups.

The origin of the problem was understood and removed in Ref [10] by improving the
order parameter

〈0|µ|0〉 → µ′ = 〈0|µ|0〉
√

(〈0|0〉)
√

(〈µ0|µ0〉)
(23)
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simple case of gauge group U(1) [7], worked perfectly within the statistical errors for gauge
groups S U(2) and S U(3) [9]. In trying to extend the analysis to G2 gauge group, to test the
general validity of the mechanism a divergence of ρ in the large volume limit showed up,
which would give µ(β) = 0 both below ad above the critical temperature βc[23]. A reanalysis
of the previous work showed that the same disease would appear at large volumes or with
larger statistics ad smaller errors also for the case of S U(2) and S U(3) gauge groups.

The origin of the problem was understood and removed in Ref [10] by improving the
order parameter

〈0|µ|0〉 → µ′ = 〈0|µ|0〉
√

(〈0|0〉)
√

(〈µ0|µ0〉)
(23)

which acts as an order parameter even when 〈µ0|µ0〉 and 〈0|µ|0〉 vanish in the infinite volume
limit. In the case of gauge group U(1) the problem does not exist and µ and µ′ differ by a
finite multiplicative constant.

For gauge group S U(2) the improvement was numerically checked in all details in Ref
[10], including the scaling behaviour at the deconfining phase transition. For S U(3) and
possibly G2 we are still collecting data.

The last open question about the order parameter, the choice of the abelian projection
along the 3-axis used in numerical updating, is given a positive answer by the arguments
presented above. Any AP is legitimate, in particular the one used in [9] and [10]. A rigorous
test thus exists of the confinement mechanism of Ref. [3] [4].

Of course strategy 2) should provide the same answer. However the last existing works
on the subject, by the ITEP group and the Kanazawa Group in which the effective potential of
the monopole field is computed by a sophisticated procedure from the monopoles observed
in lattice configurations, do not provide stable and clear evidence for a minimum at non zero
field [See Ref. [24] for a detailed discussion and an accurate bibliography]. One reason for
that can be that a fraction of the monopoles used in that analysis are not AP invariant, they are
discretisation artefacts, and can pollute the procedure employed to determine the potential.
Maybe repeating the procedure at smaller lattice spacings thus reducing the probability of
large fluctuations of the abelian magnetic flux through plaquettes would improve the result.

5 Discussion

The stringent experimental limits on the existence of free quarks indicate that there is a sym-
metry behind confinement, and that deconfinement is a change of symmetry. The only possi-
ble gauge invariant symmetry breaking in a gauge theory involves degrees of freedom living
on the 2-dimensional surface at spatial infinity, and monopoles come out as natural candi-
dates, and with them dual superconductivity of the vacuum [3] [4].

Monopoles are U(1) configurations, and there exist infinitely many ways of choosing that
U(1) in a non abelian system. Each choice is called an Abelian Projection. For long time it
has been believed that monopoles living in different AP ’s can be different from each other.
The number and the positions of the monopoles observed in lattice configurations look indeed
generically different.

Monopoles, however, are defined as classical configurations with non trivial topology
[13] [14], and topology can not be changed by continuous gauge transformations. What we
show is that the magnetic charge of a configuration is gauge and AP invariant. Creating a
monopole in any abelian projection is equivalent to create it in all AP’s. This allows to define
in a simple way the operator which creates a monopole and with it the order parameter,
which is its vacuum expectation value [10]. Both in U(1) [7] and in S U(2) pure gauge [10]
theories it has been demonstrated that confinement is due to condensation of monopoles in
the vacuum. Work is in progress on S U(3) and G2 pure gauge systems.

An alternative technique to compute the order parameter consists in computing the effec-
tive potential of the monopole field and in showing that it has a minimum at non zero field.
The effective potential is computed from the positions of the monopoles in lattice configura-
tions. The fact that no convincing results are achieved [24] can depend on the fact that the
input monopoles are strongly AP dependent, which means that many of them are probably
lattice artefacts. The situation, however, can be improved e.g. by going at larger values of
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β = 2N
g2 thus reducing fluctuation on the magnetic flux across plaquettes in terms of which

monopole are usually defined on Lattice. Finally the two strategies must give the same result.
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