Study of parity-doublet structure in the 147La nucleus

J. Wiśniewski1,*, W. Urban1, T. Rząca-Urban1, A. G. Smith2, J. F. Smith2, G. S. Simpson3, I. Ahmad4, and J. P. Greene4

1Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
2Department of Physics and Astronomy, The University of Manchester, M13 9PL, Manchester UK
3LPSC, CNRS/IN2P3 and Université Grenoble Alpes, F-38026 Grenoble, Cedex, France
4Argonne National Laboratory, Argonne, IL 60439, USA

Abstract.
The work reports several new excited states in the neutron-rich 147La nucleus, populated in spontaneous fission of 252Cf. The excitation scheme has been reinvestigated by means of γ-ray spectroscopy, using high-fold γ coincidences measured with the Gammasphere array of Ge detectors. It is shown that the 229.65-keV level has spin and parity $11/2^-$, which changes the $9/2^-$ spin-parity reported in a recent evaluation and sets up the spin-parity of the ground state as $5/2^+$. New levels allow to arrange the excitation scheme of 147La into a parity-doublet-like structure showing that the 147La nucleus may have an octupole deformation.

1 Introduction

The region of neutron-rich nuclei with masses $A \approx 150$ is a place where octupole correlations can be studied in detail. The presence of strong octupole correlations in this region has been predicted [1]. Results suggested the presence of stable octupole deformation in the 146Ba nucleus which was supported experimentally later [2], leaving, however, some open questions. In octupole deformed nuclei one would expect enhanced E1 transitions but in 146Ba those transitions are weak. This kind of behavior has been explained by further developments in theory as particular canceling of the E1 strength at the neutron number $N = 90$ [3], while reproducing strong E1 decays observed in the 144Ba neighbor [4] at $N = 88$. The present status based on studies of of 144Ba [4, 5] is that there is an octupole deformation in Ba isotopes.

It is interesting to ask about the presence of octupole correlations in odd-A neighbors of even-even nuclei possessing stable octupole deformation. Such correlations should alter positions of single-particle orbital as seen e.g. in the 147Ba nucleus. Theoretical calculations predicted spin and parity $3/2^-$ for its ground state [1] but experimental results are pointing to $5/2^-$ value and the low-spin structure is assigned to a reflection-symmetric shape [6]. Similar behavior is observed in 145Ba [7]. This raises questions about the presence of octupole deformation in odd-A, Ba isotopes and the mechanism of weakening of octupole correlations in these nuclei.

*e-mail: jakub.wisniewski@fuw.edu.pl
One may search for parity doublets in odd-Z nuclei to probe the strength of octupole effects in the region. Parity-doublet bands have been proposed in 151Pm [8, 9] and 153Eu [10], N=90 isotones. In the N=90 isotope 147La, excited states could be arranged into a parity-doublet structure, though only at higher excitation energy [11, 12]. In both works spin and parity $11/2^-$ were assigned to the 229.65-keV level, therefore it was a surprise that the recent compilation [13] has reported $9/2^-$ spin-parity for this level. Such an assignment does not agree with the proposed parity doublet structure in 147La. Moreover, recent works report the presence of $11/2^-$ bands in other N=90 isotones, 145Cs [14] and 149Pr [15]. In the present work the excitation scheme of 147La was reinvestigated, using higher-statistics data, as compared to previous studies. The aim was to confirm the presence of parity doublet bands by verifying spins and parities of excited states.

2 Reinvestigation of 147La

The presented data results from a measurement of γ-rays emitted in spontaneous fission of 252Cf. γ-rays were registered with the Gammasphere array of Anti-Compton Spectrometers (ACS) [16]. Prompt γ-rays emitted in fission were analyzed using triple-γ coincidence matrices. This technique was described in a number of previous papers (see e.g. Refs. [17–19]). The sum of γ spectra, gated on the yrast cascade of 147La is presented in Fig. 1. This is similar to the spectrum shown in Ref. [12], but now the statistics is about 20 times higher.

![Image of Figure 1](image.png)

Figure 1. Sum of γ-ray spectra doubly gated in a triple-γ histogram on pairs of lines from the 167.6-212.0-346.3-454.4-528.5-keV, yrast cascade in 147La, as obtained in this work.

In this work we confirm major coincidence relations and the arrangement of excited levels into bands in 147La, as reported in previous works [11, 12]. Moreover, in the low-spin part, we observe a number of important transitions, which allow to arrange excited levels and transitions in 147La into a parity-doublet structure similar to the structure observed in 151Pm. In Fig. 2 we present the new excitation scheme of 147La. New lines are marked with asterisks. Strong in-band E2, stretched transitions with simplex value $s = +i$ can be seen in Fig. 1. In the excitation scheme we omitted transitions and levels populated in β decay of 147Ba [20] presented in a previous work [12].
Figure 2. Scheme of excited levels in ^{147}La, populated in spontaneous fission of ^{252}Cf, as observed in the present work. The thickness of the arrows is proportional to their relative γ intensities. New lines are marked with asterisks. See text for further information.
Figure 3 shows a γ-ray spectrum cut from a 3D histogram containing prompt triple-γ coincidences, sorted within a time window of 600 ns. The spectrum is obtained by gating on the known 167.55–211.98-keV lines. In the spectrum one can see prompt-γ 487.7-, 528.65-, 538.8-, 570.3-, 588.9-keV lines in band corresponding to the simplex value $s = +i$. In addition one observes two new transitions of energies 512.6- and 603.1-keV, marked with asterisks.

![Figure 3. γ-ray spectrum doubly gated on the 167.55- and 212.0-keV lines in 252Cf fission data. Energies are given in keV. New lines are marked with asterisks.](image)

Spectra obtained by gating on the known 211.98-keV transition and new 512.6- and 603.1-keV transitions, respectively are shown on Figs. 4 and 5. Next to the 167.55-, 346.1- and 375.1-keV lines, reported earlier [11, 12], there are new lines at 198.0, 253.5, 381.5 and 436.5 keV. This and other gated spectra allow to assign these transitions to the $s = -i$ branch of the parity doublet.

![Figure 4. γ-ray spectrum doubly gated on 212.0- and 512.6-keV lines in the 252Cf fission data. Energies are given in keV. New lines are marked with asterisks.](image)
A γ-ray spectrum, doubly gated on the 297.45- and 381.5-keV new lines of 147La, is presented in Fig. 6. One can see the 346.5- and 375.1-keV lines reported previously as well as two new lines at 414.25 and 421.4 keV. Analysis of other doubly-gated spectra lead us to the conclusion that these two transitions connect the 1207.64- and 371.9-keV levels via new 786.15-keV level. We propose the ordering of the two new lines as presented in Fig. 2.

Spins and parities of levels shown in Fig. 2 have been, generally, adopted from Refs. [11, 12], but some values have been altered and some are new. In order to determine new spins and parities we analyzed angular correlations for cascades of γ rays in 147La populated in spontaneous fission of 252Cf. Characteristic, pure quadrupole-quadrupole (Q-Q) and pure dipole quadrupole (D-Q) angular correlations are shown in figure 7. The γγ angular correlations in the 346.1-211.98-keV and 454.3-346.1-keV cascades are consistent with a stretched quadrupole nature of these transitions.
Spin assignments to higher energy levels in this band are proposed based on the assumption of a stretched E2 character for the transitions between those levels and the fact that spins are growing with excitation energy, as commonly observed for excited states populated in spontaneous fission [21].

Angular correlation data are also consistent with the dipole character of the 570.3- and 588.9-keV transitions and therefore they are in-band transitions connecting states, which differ by one unit of angular momentum and have opposite parity. Angular correlations for the 371.7-570.3-keV γγ cascade shows that the 371.7-keV transition may be a quadrupole transition. Therefore we propose that the yrast band above the 1358.0-keV level consists of stretched E2 transitions connecting levels in a positive-parity band. The mixing ratios, $\delta = 0.030^{+38}_{-37}$ and -0.021^{+24}_{-26} for the 603.1- and 512.6-keV transitions respectively indicate a pure M1 multipolarity for both transition. This provides negative parity assignments for the 954.23- and 1390.78-keV levels.

![Figure 7. Example of angular correlations in 147La for Quadrupole-Quadrupole and Dipole-Quadrupole cascades, as measured in this work. See text for further information.](image)

To establish spin and parity of the 229.65-keV level we have determined the conversion coefficient for the 62.1-keV transition. By setting a double gate on the 346.1- and 167.55-keV transitions we obtain a spectrum in which the 211.98- and 62.1-keV transitions have the same total intensity. We have established earlier by using angular correlations that the 211.98-keV transition is pure E2. Taking the theoretical $\alpha_{tot}(211.98) = 0.1463$ value we calculated the total intensity in this gate and then used it to calculate the total conversion coefficient for the 62.1-keV transition. The obtained value of $\alpha_{tot}(62.1) = 11.8(1.5)$ is consistent with a pure E2 transition, considering the theoretical value of $\alpha_{tot} = 11.29$ for a pure E2 transition. We adopt spin-parity $5/2^+$ and $7/2^-$ for the ground state and the 167.55-keV level, respectively. These assignments were made by confirming the stretched E1 character of the 167.55-keV transition and the β-decay properties of the ground state of 147Ba. Therefore we propose the 229.65-keV level to have spin and parity $11/2^-$. This is in agreement with
the previous findings [11, 12] and changes the value $9/2^-$, reported in the evaluation of the data for 147La [13].

References