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Abstract. An equation of motion phonon method, developed for even-even nuclear systems and extended to
odd nuclei, is applied to 22O and to its odd neighbors 23O and 23F. A calculation using the chiral potential
NNLOopt is carried out in a space encompassing up to two phonons. The computed dipole cross section in
22O and the spectra of 22O and 23O are in a satisfactory agreement with the experimental data. However, the
calculation describes poorly the spectrum of 23F. This discrepancy originates from the strong coupling between
the odd proton and the 22O phonons of neutron nature. This coupling pushes down in energy several states
enhancing the level density at low energy. We suggest that a viable route for the solution of this problem could
be the inclusion of the three-body interaction using the new chiral potential NNLOsat.

1 Introduction

In the last decades, several experiments have been carried
out to study the spectroscopic properties of neutron rich
isotopes in the oxygen region. In particular, the occurrence
of new magic numbers, N = 14 and N = 16, the limit
of the neutron dripline and the pygmy dipole resonance
(PDR) have been subjects of extensive studies [1–15].

The large amount of data produced has stimulated sev-
eral theoretical investigations. Many coupled cluster cal-
culations have been performed to study bulk properties and
low-energy levels, most of them using NN + 3N chiral
forces derived from the effective field theory [16–22].

Three-body forces have been used also within a many-
body perturbation theory calculation [23], a shell model
calculation [24], and a self-consistent Green’s function
theory approach [25].

The equation of motion phonon method (EMPM) has
been also used to study the nuclei in this region. The
method was first formulated for even-even nuclei in the
particle-hole (p-h) scheme [26–28] and, then, in terms of
Hartree-Fock-Bogoliubov (HFB) quasiparticles (qp) [29].
It derives a set of equations yielding a basis of orthonormal
multiphonon states, built of phonons obtained in Tamm-
Dancoff approximation (TDA), and, then, solves the full
eigenvalue problem in the space spanned by such a basis.
It takes the Pauli principle into full account and does not
rely on any approximation. It has been adopted to study
spectra and dipole responses of light and heavy even-even
nuclei [30–33].

More recently it has been also extended to odd nuclei
[34–36]. An orthonormal basis of states composed of a va-
∗e-mail: degregorio@na.infn.it

lence particle coupled to n-phonon states (n = 0, 1, 2, . . . ),
describing the excitations of a doubly magic core, is pro-
duced by a set of equations of motion and, then, employed
for the solution of the full eigenvalue problem.

Here we report on the application of the EMPM to
study the low- and high-energy spectroscopic properties
of 22O and its adjacent nuclei 23O and 23F [37]. The com-
parison of the results with the experimental data and the
analysis of the phonon composition contributes to disclose
the nature of the states and shows the limits of the adopted
potential.

2 The Equation of Motion Phonon Method
for even-even nuclei

Let us consider the Hamiltonian

H = H0 + V. (1)

H0 is the one-body term

H0 =
∑

r

[r]1/2ϵr
(
a†r × br

)0
, (2)

where a†r = a†xr jrmr
(br = (−) jr+mr axr jrmr ) creates (annihi-

lates) a particle of energy ϵ [r] stands for [r] = 2 jr + 1 and
the symbol × denotes angular momentum coupling. V is a
two-body potential

V =
1
4

∑
rsqtσ

[σ]1/2Fσrsqt

[(
a†r × bs

)σ ×
(
a†q × bt

)σ]0
, (3)

where Fσ is derived from the two-body potential VΩ

through the Pandya transformation

Fσrsqt =
∑
Ω

[ω](−)(r+t−σ−Ω)W(rsqt;σΩ)VΩrstq. (4)
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Here W(rsqt;σΩ) are Racah coefficients.
The primary goal of the method is to derive a basis of

n-phonon correlated states of the form

| βn⟩ =
∑
λαn−1

Cβn
λαn−1
| (λ × αn−1)βn⟩

=
∑
λαn−1

Cβn
λαn−1

{
O†λ× | αn−1⟩

}βn
, (5)

of energy Eβn , where

O†λ =
∑
ph

cλph(a†p × bh)λ (6)

is the p-h TDA phonon operator of energy Eλ acting on the
(n−1)-phonon basis states | αn−1 >, assumed to be known.
The operators a†p = a†xp jpmp

and bh = (−) jh+mh axh jh−mh cre-
ate a particle and a hole of energies ϵp and −ϵh, respec-
tively.

As illustrated in Ref. [28], we start with the equations
of motion

⟨βn ∥ [H,O†λ] ∥ αn−1⟩ =
(
Eβn − Eαn−1

)
Xβn
λαn−1
, (7)

where

Xβn
λαn−1

= ⟨βn ∥ O†λ ∥ αn−1⟩

= [βn]1/2
∑
λ′α′n−1

Dβn
λαn−1λ′α′n−1

Cβn
λ′α′n−1
. (8)

Here [βn] = 2Jαn + 1, a notation which will be used
throughout the paper, and

Dβn
λαn−1λ′α′n−1

= ⟨(λ × αn−1)βn | (λ′ × α′n−1)βn⟩ (9)

is the overlap or metric matrix which reintroduces the ex-
change terms among different phonons and, therefore, re-
establishes the Pauli principle. Its expression can be found
in [28]. From now on we will omit the subscript n when
acting within a n−phonon subspace.

After expanding the commutator in the Eq. (7) and ex-
pressing the amplitudes X in terms of the coefficients Cβλα
through Eq. (8), we obtain

∑
λ1α1λ′α′

(
(Eλ + Eα − Eβ)δλλ1δαα1 +V

β
λαλ1α1

)

×Dβλ1α1λ′α′
Cβλ′α′ = 0, (10)

where Vβλαλ′α′ is the phonon-phonon potential whose ex-
pression can be found in [28].

Equation (10) represents an eigenvalue equation in the
over-complete basis | (λ × α)β⟩ within the n-phonon core
subspace. The redundant states are eliminated following
the procedure outlined in Refs. [26, 27], based on the
Cholesky decomposition method. It allows to extract a
basis of linearly independent states spanning the physi-
cal subspace to obtain a non singular eigenvalue equation
whose iterative solution yields a basis of orthonormal cor-
related n-phonon states of the form (5).

The eigenvalue problem in such a basis is given by
∑
n′βn′

[(
Eαn − Eν

)
δnn′δαnβn′ +Vαnβn′

]
C(ν)
βn′
= 0, (11)

whereVαnβn′ are non vanishing for n′ = n+1 and n′ = n+2.
The solution of the above eigenvalue equation yields the
eigenvalues Eν and the eigenstates

| Ψν⟩ =
∑
nαn

C(ν)
αn
| αn⟩. (12)

The wavefunctions (12) can be used to compute the tran-
sition amplitudes of a multipole operator

⟨Ψν′ ∥ M(λ) ∥ Ψν⟩ =∑
(nαn)(n′βn′ )

C(ν)
αn

C(ν′)
βn′
⟨βn′ ∥ M(λ) ∥ αn⟩. (13)

Here the matrix elements of M(λ) between multiphonon
states are

⟨βn′ ∥ M(λ) ∥ αn⟩ = [λ]−1/2
[
δn′nM(n)

αβ(λ) +

+
∑

x

M(0→ xλ)
(
δn′(n+1)X

βn+1
(xλ)αn

+(−)v
′−vδn′(n−1)X

αn
(xλ)βn−1

)]
, (14)

where

M(0→ xλ) =< xλ ∥ M(λ) ∥ 0 >=

=
∑
ph

c(xλ)
ph < p ∥ M(λ) ∥ h > (15)

is the TDA transition amplitude and

M(n)
αβ(λ) =

∑
rs

⟨r ∥ M(λ) ∥ s⟩⟨α ∥ (a†r × bs)λ ∥ β⟩ (16)

is the scattering term between states with the same number
of phonons (n′ = n).

3 The Equation of Motion Phonon Method
for odd nuclei

An analogous procedure is adopted to generate an or-
thonormal multiphonon particle-core basis for a valence
nucleon external to a doubly magic core, and then, to solve
the full eigenvalue problem.

The basis states | ν⟩ of spin v have the form

| ν⟩ =
∑
pα

Cνpα | (p × α)v⟩ =
∑
pα

Cνpα
(
a†p× | α⟩

)v
, (17)

where | α⟩ are the n-phonon core states (5).
In close analogy with the even nuclei we start with

⟨α ∥ [bp,H]p ∥ ν⟩ = (Eν − Eα)X(ν)
pα, (18)

where

X(ν)
pα = ⟨α ∥ bp ∥ ν⟩ =

∑
p1α1

D(v)
p′α′p1α1

Cνp1α1
. (19)

and

D(v)
pαp′α′ = ⟨(p′ × α′)v | (p × α)v⟩ (20)
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Cνpα
(
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⟨α ∥ [bp,H]p ∥ ν⟩ = (Eν − Eα)X(ν)
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where

X(ν)
pα = ⟨α ∥ bp ∥ ν⟩ =

∑
p1α1

D(v)
p′α′p1α1

Cνp1α1
. (19)

and

D(v)
pαp′α′ = ⟨(p′ × α′)v | (p × α)v⟩ (20)

is the overlap matrix which reintroduces the exchange
terms among the odd particle and the n-phonon states and,
therefore, re-establishes the Pauli principle.

After expanding the commutator and expressing X in
terms of Cνp1α1

through the Eq. (19) we obtain

∑
p′α′p1α1

{
(ϵp + Eα − Eν)δpp′δαα′ +V(v)

pαp′α′
}

×D(v)
p′α′p1α1

Cνp1α1
= 0. (21)

whereV(v)
pαp′α′ is the particle-phonon interaction.

Equation (21) represents an eigenvalue equation in
the over-complete basis | (p × α)v⟩ within the n-phonon
particle-core subspace. Following the same procedure
adopted for even nuclei, based on the Cholesky decom-
position method, we extract a basis of linearly indepen-
dent states and obtain a non-singular eigenvalue equations
whose iterative solution yields the orthonormal particle-
core states | νn⟩. This states can be used to diagonalize the
full Hamiltonian

∑
ν′n′

{(
Eνn − Eν

)
δνnν′n′ +V

(v)
νnν
′
n′

}
C(ν)
ν′n′
= 0, (22)

where V(v)
νnν
′
n′

is non vanishing only for n′ � n. Eq. (22)
yields all the eigenvalues allowed by the space dimensions
and the eigenfunctions

| Ψν⟩ =
∑
νn

Cννn | νn⟩ (23)

where | νn⟩ is given by Eq. (17).
Using the wavefunctions (23), we get the transition

amplitudes

⟨Ψν′ ∥ M(λ) ∥ Ψν⟩ =
∑
νnν
′
n′

CννnC
ν′

ν′n′
⟨ν′n′ ∥ M(λ) ∥ νn⟩, (24)

where

⟨ν′n′ ∥ M(λ) ∥ νn⟩ = [v]1/2
∑
pαn

Cνnpαn
M(νnν′n′ )

pαn (λ). (25)

For n′ = n we have

M(νnν′n)
pαn (λ) =

∑
p′

W(λp′vαn; pv′)⟨p′ ∥ Mλ ∥ p⟩X(ν′n)
p′αn

+
∑
α′n

W(pαnv
′λp; vα′n)⟨α′n ∥ M(λ) ∥ αn⟩X(ν′n)

pα′n
. (26)

For n′ = n + 1 we get

M(νnν′n+1)
pαn (λ) =

∑
βn+1

W(λαnv
′p; βn+1v)X

(ν′n+1)
pβn+1

×
∑

x

M(0→ [xλ])X(βn+1)
(xλ)αn
. (27)

The transition amplitude for n′ = n − 1 can be deduced
from the one for n′ = n + 1.

4 Calculations and results

We used a Hamiltonian composed of an intrinsic kinetic
operator Tint plus the NNLOopt optimized chiral potential
[38] to generate the HF basis in a configuration space en-
compassing all the harmonic oscillator major shells up to
Nmax = 15.

The TDA phonons are derived from a subset of HF
states corresponding to N = 7. Their structure does not
change if we use the full HF space. The spurious Jπ = 1−

TDA components induced by the center of mass (CM) mo-
tion have been removed by resorting to a Gramm-Schmidt
orthogonalization procedure discussed in Ref. [39].

All the TDA phonons with dominant 0−�ω and 1−�ω
components are the constituents of the two-phonon states
in 22O. These, with the TDA phonons, are the core states
coupled to the odd particle for generating the multiphonon
basis of 23O and 23F.

4.1 Spectra of 22O, 23O and 23F

The EMPM and the experimental spectra are compared to
one another in Fig. 1.

In 22O we obtain a one to one correspondence between
the computed low-lying positive parity states and the ex-
perimental levels [12]. The negative parity states are esti-
mated to be above the neutron decay threshold consistently
with experiments.

The mixing of the HF vacuum with the two-phonon
components is very modest. In fact, the total wave func-
tion is composed of a large number of two-phonon states
of different multipolarities, all having small amplitudes,
whose overall contribution amounts to 8.5%.

The excited states have an almost pure n−phonon char-
acter. The lowest 2+1 and 3+1 are almost pure neutron TDA
phonons arising from single p-h excitation in the sd shell.

The subsequent triplet of states, {0+2 , 2+2 , 4+2 } is of two-
phonon nature. These states are composed of the low-lying
2+1 and 3+1 phonons and, therefore, have a neutron nature as
well. Their composition suggests an harmonic character
of the triplet, which, however, is confirmed only by the
experimental spectrum.

The low-lying negative parity states appear at ∼ 7 MeV
and have a one-phonon nature. They arise mainly from
exciting a neutron from 0d5/2 to 1p1/2 or 1p3/2.

The spectrum of 23O determined experimentally [10]
is composed of two positive parity 5/2+ and 3/2+ levels
and a level, probably of negative parity, at higher energy.
All of them are above the neutron decay threshold (Fig. 1).

The computed levels are also above such a threshold.
The positive parity ones are close in energy to the cor-
responding experimental levels, and the negative parity
states are compatible in spin and energy with the corre-
sponding detected level.

As in 22O, all the states have substantially a single
n−phonon structure. While the 3/2+1 and the lowest neg-
ative parity states have a single particle nature, the first
excited 5/2+1 is a particle-phonon state resulting, almost
entirely, from coupling the 1/2+1 particle to the 3+1 phonon.
This component accounts for ∼ 97% of the state.
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Figure 1. (Color online) Theoretical versus experimental [4, 5, 10, 12] spectra of 22O,23O and 23F . The dashed lines denote levels of
unknown spin and parity. The dotted lines indicate the neutron decay thresholds.

In the energy interval ∼ 4.8 − 6.2MeV the cal-
culation yields a quintuplet of positive parity states
{1/2+2 , 3/2+2 , 5/2+2 , 7/2+1 , 9/2+1 } arising from the coupling of
the 1/2+1 neutron particle to the low-lying two-phonon har-
monic triplet of the 22O already discussed (Fig. 1). Thus,
the computed 23O level scheme keeps memory of the har-
monic nature of the spectrum of the 22O.

The experimental spectrum of 23F [4, 5] is much
richer compared to 23O, and is described poorly within the
EMPM. In fact, several theoretical levels occur in the low-
energy region without an experimental counterpart.

The reason of such a high density of levels at low en-
ergy is the too strong proton-phonon coupling. The origin
of such a strong coupling resides in the neutron dominance
of the low-energy phonons which arise entirely from the
excitations within the neutron sd shell.

4.2 Dipole response in 22O

As shown in Fig. 2, the theoretical dipole cross section of
the 22O is in qualitatively good agreement with the experi-
mental data [13]. The ground state correlation induced by
the two-phonon states shifts upward in energy by ∼ 2 MeV
the calculated cross section without changing its shape.
The highest peak occurs at ∼ 30 MeV and is out of the
experimental region.

The integrated cross section up to ∼ 25 MeV exhausts
∼ 30% of the TRK sum rule. This value is in agreement,
within the errors, with the experimental sum. However,

5 10 15 20 25 30
(MeV)

0

10

20

30

40

50

(m
b)

Exp
TDA
EMPM

22O

Figure 2. Theoretical versus experimental [13] E1 cross section
in 22O. A Lorentzian of width ∆ = 2 MeV is used.

the largest contribution comes from the strength at higher
energy. In fact, the total sum up to ∼ 40 accounts for ∼
125%

At low energy ∼ 7 − 15 MeV, the cross section exhibit
small humps which can be associated to the PDR. In fact,
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Figure 3. Transition densities for the lowest 1− state (a) and one
falling in the region of the GDR (b)

as confirmed by the transition densities plotted in Fig. 3,
the neutron skin oscillates against the core at low energy
(Fig. 3 (a)) while proton and neutron fluids oscillate in op-
position of phases in the GDR region (Fig. 3 (b)).

5 Conclusions

The EMPM describes fairly well the spectra of 22O and
23O. In 22O there is a one to one correspondence between
theoretical and experimental positive parity low-energy
states. The lowest 2+1 and 3+1 are almost pure neutron TDA
phonons arising from single p-h excitation within the sd
shell. These states are the constituents of an harmonic
triplet of states, {0+2 , 2+2 , 4+1 }, falling in the energy region
∼ 5 − 6 MeV.

The negative parity states have spin and energy com-
patible with the experimental levels, occur at higher en-
ergy and arise from the excitation of 0d5/2 neutron hole to
the p f particle shell.

In 23O, the few measured levels are well reproduced.
They are shown to have a dominant neutron character
and to have a pure particle-phonon structure. In fact, the
weak neutron-neutron interaction is ineffective in induc-
ing a mixing among different n-phonon subspaces given
the neutron nature of the low-lying phonons of 22O.

The neutron dominance of the latter phonons has an
opposite effect on the 23F. In fact, the proton-phonon cou-
pling induced by the strongly attractive neutron-proton in-
teraction is magnified by such a dominance pushes sev-
eral states into the low-energy region thereby enhancing
greatly the density of levels.

This mechanism explains why the description of the
23F spectrum is unsatisfactory.

A more moderate dominance of the low-lying neutron
p-h states would not only weaken the neutron-proton dom-

inance of the particle-phonon coupling but also improve
further the spectra of 22O and 23O by partly breaking their
too harmonic character.

A possible recipe is to replace the adopted potential
with the NNLOsat [40]. This potential includes explicitly
the three-body contribution and improves the description
of binding energies and nuclear radii as well [41]. Pre-
liminary calculations using such a potential in a harmonic
oscillator space encompassing up to twelve major shells
yield more compact HF level schemes. In particular,
the gaps between the (sd) and (0p) states is ∼ 13 MeV
for protons and ∼ 11 MeV for neutrons, much smaller
than the corresponding gaps produced by NNLOopt,
∼ 20 MeV. We feel therefore encouraged to pursue along
this direction.

This work was partly supported by the Czech Science Foun-
dation (Czech Republic), P203-13-07117S. Two of the authors
(F. Knapp and P. Veselý) thank the INFN (Italy) for finan-
cial support. Highly appreciated was the access to comput-
ing and storage facilities provided by the Meta Centrum under
the program LM2010005 and the CERIT-SC under the program
Centre CERIT Scientific Cloud, part of the Operational Pro-
gram Re- search and Development for Innovations, Reg. No.
CZ.1.05/3.2.00/08.0144.

References

[1] P. Thirolf, B. Pritychenko, B. Brown, P. Cottle, M.
Chromik, T. Glasmacher, G. Hackman, R. Ibbotson,
K. Kemper, T. Otsuka, et al., Phys. Lett. B 485, 16
(2000)

[2] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and
I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000)

[3] E. Becheva, Y. Blumenfeld, E. Khan, D. Beaumel,
J. M. Daugas, F. Delaunay, C.-E. Demonchy, A.
Drouart, M. Fallot, A. Gillibert, et al., Phys. Rev.
Lett. 96, 012501 (2006)

[4] S. Michimasa, S. Shimoura, H. Iwasaki, M. Tamaki,
S. Ota, N. Aoi, H. Baba, N. Iwasa, S. Kanno, S.
Kubono, et al., Phys. Lett. B 638, 146 (2006)

[5] C. S. Sumithrarachchi, D. J. Morrissey, B. A. Brown,
A. D. Davies, D. A. Davies, M. Fancina, E. Kwan, P.
F. Mantica, M. Portillo, Y. Shimbara, et al., Phys.
Rev. C 75, 024305 (2007)

[6] A. Schiller, N. Frank, T. Baumann, D. Bazin, B.
A. Brown, J. Brown, P. A. De Young, J. E. Finck,
A. Gade, J. Hinnefeld, et al., Phys. Rev. Lett. 99,
112501 (2007)

[7] Z. Elekes, Z. Dombrádi, N. Aoi, S. Bishop, Z. Fülöp,
J. Gibelin, T. Gomi, Y. Hashimoto, N. Imai, N.
Iwasa, et al., Phys. Rev. Lett. 98, 102502 (2007)

[8] C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, G.
Christian, P. A. DeYoung, J. E. Finck, N. Frank, J.
Hinnefeld, R. Howes, et al., Phys. Rev. Lett. 100,
152502 (2008)

[9] R. Kanungo, C. Nociforo, A. Prochazka, T. Aumann,
D. Boutin, D. Cortina-Gil, B. Davids, M. Diakaki,

5

EPJ Web of Conferences 194, 01003 (2018) https://doi.org/10.1051/epjconf/201819401003
NSRT18



F. Farinon, H. Geissel, et al., Phys. Rev. Lett. 102,
152501 (2009)

[10] C. R. Hoffman, T. Baumann, J. Brown, P. A. DeY-
oung, J. E. Finck, N. Frank, J. D. Hinnefeld, S.
Mosby, W. A. Peters, W. F. Rogers, et al., Phys. Rev.
C 83, 031303 (2011)

[11] E. Lunderberg, P. A. DeYoung, Z. Kohley, H. At-
tanayake, T. Baumann, D. Bazin, G. Christian, D.
Divaratne, S. M. Grimes, A. Haagsma, et al., Phys.
Rev. Lett 108, 142503 (2012)

[12] M. S. Basunia, Nuclear Data Sheets 127, 69 (2015)
[13] A. Leistenschneider, T. Aumann, K. Boretzky, D.

Cortina, J. Cub, U. Datta Pramanik, W. Dostal, T. W.
Elze, H. Emling, H. Geissel, et al., Phys. Rev. Lett.
86, 5442 (2001)

[14] E. Tryggestad, T. Aumann, T. Baumann, D. Bazin, J.
R. Beene, Y. Blumenfeld, B. A. Brown, M. Chartier,
M. L. Halbert, P. Heckman, et al., Phys. Lett. B 541,
52 (2002)

[15] E. Tryggestad, T. Baumann, P. Heckman, M. Thoen-
nessen, T. Aumann, D. Bazin, Y. Blumenfeld, J. R.
Beenec, T. A. Lewis, D. C. Radford, et al., Phys. Rev.
C 67, 064309 (2003)

[16] J. R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Wloch,
and D. J. Dean, Phys. Rev. C 74, 024310 (2006)

[17] G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-
Jensen, and B. Velamur Asokan, Phys. Rev. C 80,
021306(R) (2009)

[18] G. Hagen, T. Papenbrock, and M. Hjorth-Jensen,
Phys. Rev. Lett. 104, 182501 (2010)

[19] O. Jensen, G. Hagen, M. Hjorth-Jensen, and J. S.
Vaagen, Phys. Rev. C 83, 021305 (2011)

[20] O. Jensen, G. Hagen, M. Hjorth-Jensen, B. A.
Brown, and A. Gade, Phys. Rev. Lett. 107, 032501
(2011)

[21] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Mach-
leidt, and T. Papenbrock, Phys. Rev. Lett. 108,
242501 (2012)

[22] G. R. Jansen, J. Engel, G. Hagen, P. Navrátil, and A.
Signoracci, Phys. Rev. Lett. 113, 142502 (2014)

[23] J. D. Holt, J. Menéndez, and A. Schwenk, Eur. Phys.
J. A 49, 39 (2013)

[24] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y.
Akaishi, Phys. Rev. Lett. 105, 032501 (2010)

[25] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev.
Lett. 111, 062501 (2013)

[26] F. Andreozzi, F. Knapp, N. Lo Iudice, A. Porrino,
and J. Kvasil, Phys. Rev. C 75, 044312 (2007)

[27] F. Andreozzi, F. Knapp, N. Lo Iudice, A. Porrino,
and J. Kvasil, Phys. Rev. C 78, 054308 (2008)

[28] D. Bianco, F. Knapp, N. Lo Iudice, F. Andreozzi, and
A. Porrino, Phys. Rev. C 85, 014313 (2012)

[29] G. De Gregorio, F. Knapp, N. Lo Iudice, and P.
Veselý, Phys Rev. C 93, 044314 (2016)

[30] D. Bianco, F. Knapp, N. Lo Iudice, F. Andreozzi,
A. Porrino, and P. Veselý, Phys. Rev. C 86, 044327
(2012)

[31] F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi,
G. De Gregorio, and A. Porrino, Phys. Rev. C 90,
014310 (2014)

[32] F. Knapp, N. Lo Iudice, P. Veselý, F. Andreozzi,
G. De Gregorio, and A. Porrino, Phys. Rev. C 92,
054315 (2015)

[33] G. De Gregorio, J. Herko, F. Knapp, N. Lo Iudice,
and P. Veselý, Phys. Rev. C 95, 024306 (2017)

[34] G. De Gregorio, F. Knapp, N. Lo Iudice, and P.
Veselý, Phys. Rev. C 94, 061301(R) (2016)

[35] G. De Gregorio, F. Knapp, N. Lo Iudice, and P.
Veselý, Phys. Rev. C 95, 034327 (2017)

[36] G. De Gregorio, F. Knapp, N. Lo Iudice, and P.
Veselý, Phys. Scr. 92, 074003 (2017)

[37] G. De Gregorio, F. Knapp, N. Lo Iudice, and P.
Veselý, Phys. Rev. C 97, 034311 (2018)

[38] A. Ekström, G. Baardsen, C. Forssén, G. Hagen,
M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W.
Nazarewicz, T. Papenbrock, J. Sarich, et al., Phys.
Rev. Lett. 110, 192502 (2013)

[39] D. Bianco, F. Knapp, N. Lo Iudice, P. Veselý, F. An-
dreozzi, G. De Gregorio, and A. Porrino, J. Phys. G:
Nucl. Part. Phys. 41, 025109 (2014)

[40] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.
Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-
Jensen, P. Navrátil, and W. Nazarewicz, Phys. Rev. C
91, 051301 (2015)

[41] V. Lapoux, V. Soma’, C. Barbieri, H. Hergert, J.
D. Holt, and S. R. Stroberg, Phys. Rev. Lett. 117,
052501 (2016)

6

EPJ Web of Conferences 194, 01003 (2018) https://doi.org/10.1051/epjconf/201819401003
NSRT18


