
Realistic shell model description of beta decay

Angela Gargano1,∗, Luigi Coraggio1, Luca De Angelis1, Tokuro Fukui1, and Nunzio Itaco1,2

1Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy
2Dipartimento di Matematica e Fisica, Università degli Studi della Campania ”Luigi Vanvitelli", viale Abramo Lincoln 5 - I-81100
Caserta, Italy

Abstract. In this paper, we extend our previous realistic shell-model study of Gamow-Teller strengths and
double-β decay properties for nuclei around 132Sn to lighter mass nuclei. The effective shell-model Hamilto-
nian and transition operators are microscopically derived by way of many-body perturbation theory, without
resorting to empirical parameters. Our main aim is to further check the reliability of our approach and verify its
stability in other mass regions. Calculated energy spectra as well as electric-quadrupole and β-decay properties
are presented for 76Ge and 82Se and compared with the experimental data, together with some results for 130Te
and 136Xe already reported in our previous paper. Finally, some preliminary results of nuclear matrix elements
responsible for the neutrinoless double beta decay, calculated by using the bare operator, are shown.

1 Introduction

The neutrinoless double beta (0νββ) decay provides a ma-
jor opportunity to address relevant questions about the
mass and the nature of neutrinos. Its study is on top of the
agenda of current experimental and theoretical research
programs around the world [1]. The estimate of the as-
sociated lifetimes, as well as the extraction of the neutrino
effective mass once a decay signal has been observed, re-
quires the knowledge of the matrix elements of the transi-
tion operators between the parent and grand-daughter nu-
clei.

The calculation of nuclear matrix elements (NMEs)
responsible for the 0νββ decay has been tackled in the
framework of several theoretical approaches, as the quasi-
particle random-phase approximation, the interacting bo-
son model, the shell model, and energy density functional
methods (see, for instance, [2–6] and references therein).
However, the spread of the values obtained with different
approaches is quite large. As a matter of fact, results, ob-
tained with different nuclear structure models, largely dif-
fer, thus indicating the need to improve the accuracy of
nuclear structure calculations.

By analogy with single-β and two-neutrino double-β
(2νββ) processes whose predicted lifetimes are almost al-
ways shorter than measured lifetimes, a quenching of the
axial coupling constant gA is quite often introduced in or-
der to take into account missing many-body correlations
and/or coupling with non-nucleonic degrees of freedom
in a phenomenological way. A review of the theoretical
methods and calculations employed to predict the NMEs
of the 0νββ decay is given in the recent review paper of
Ref. [7], where the renormalization of the axial vector cou-
pling gA is also discussed in detail.
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A valuable tool to address this problem is given by the
realistic shell model (SM) [8, 9]. Within this approach, the
SM Hamiltonian and the transition operators are derived
from a realistic free nuclear potential by way of many-
body perturbation theory on the same footing. In this way,
one can account for renormalization effects induced by
missing correlations in the nuclear wave functions as re-
sulting from truncations of the Hilbert space.

As a first step towards the calculation of the NMEs of
the 0νββ decay, we have recently performed a realistic SM
study of 130Te and 136Xe [10], which are candidates for the
observation of the 0νββ decay. The focus was on Gamow-
Teller (GT) strengths and 2νββ decay NMEs, which may
provide a relevant test of our approach. It turned out that
the available experimental data – energy spectra, electric-
quadrupole transitions and beta decay properties – are well
described by our calculations without the need to resort to
empirical parameters, and, in particular, without quench-
ing the gA constant.

To further check the reliability of our approach and in-
vestigate the renormalization effects in different mass re-
gions, we have carried out realistic SM calculations for
other nuclei, which are also candidates for the observation
of the 0νββ decay. Results will be presented in a forthcom-
ing paper [11]. Here, we present energy spectra as well as
electric-quadrupole transitions and beta decay properties
for 76Ge and 82Se. For the sake of completeness, we also
show the GT strengths and 2νββNMEs of 130Te and 136Xe.

Our starting point is again the high-precision CD-
Bonn nucleon-nucleon (NN) potential [12], whose repul-
sive high-momentum components are smoothed out using
the Vlow−k approach [13]. Then, the effective SM Hamilto-
nian and transition operators are derived within the time-
dependent perturbation theory [14], including diagrams up
to the third order.
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Within this approach we have also computed the 0νββ
decay NMEs by employing the bare operators for all the
four nuclei under investigation. A comparison of the ob-
tained NMEs results with those of other SM calculations
may provide an important test of our wave functions, be-
fore calculating the NMEs with effective operators.

The paper is organized as follows. In Sec. 2, we out-
line the theoretical framework of our approach and give
some details about the derivation of the SM Hamiltonian
and effective transition operators. Section 3 is devoted to
the presentation of the results of our calculations and to the
comparison with the available experimental data. A sum-
mary and some concluding remarks are given in the last
section.

2 Theoretical framework

In our realistic SM calculations for 76Ge and 82Se, we have
taken 56Ni as closed core and employed a model space
spanned by the four orbitals 0 f5/2, 1p3/2, 1p1/2, 0g9/2 for
both protons and neutrons. For 130Te and 136Xe , we have
assumed that valence protons and neutrons occupy the five
orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2 outside 100Sn. In
both cases, the effective Hamiltonian and transition opera-
tors have been derived within the framework of the many-
body perturbation theory outlined below.

Starting from the Hamiltonian, H, for a system of A
nucleons interacting via two-body forces, we introduce an
auxiliary potential so that it can be written as the sum of a
one-body component H0, which describes the independent
motion of the nucleons, and a residual interaction H1.

H = (T + U) + (VNN − U) = H0 + H1, (1)

where T is the kinetic energy and VNN a low-momentum
two-body potential, obtained through the Vlow−k procedure
[13] from the CD-Bonn NN potential [12], by using a cut-
off momentum Λ = 2.6 fm−1. The harmonic oscillator
potential is chosen for U and the Coulomb force added to
the Vlow−k for protons.

Then, the diagonalization of the Hamiltonian (1) in the
full Hilbert space is reduced to a model-space eigenvalue
problem introducing an effective Hamiltonian, Heff , acting
only on the truncated model space defined in terms of the
eigenvectors of H0.

A well-established approach to the determination of
the effective Hamiltonian is given by the Kuo-Lee-Ratcliff
folded-diagram expansion [14]. A detailed description of
this approach can be found in Refs. [8, 9]. Here, we would
like to highlight only that it is based on the perturbative
expansion of the so-called Q̂-box

Q̂(ε) = PH1P + PH1Q
1

ε − QHQ
QH1P, (2)

where P and Q are projection operators onto the model
space and its complement.

The Q̂-box is calculated including one- and two-body
Goldstone diagrams through third order in H1. Calcu-
lations beyond the third order in perturbation theory are
computationally prohibitive, so we have computed also

the Padé approximant [2|1] of the Q̂-box to obtain a value
to which the perturbation series should converge, as sug-
gested in [15].

The effective Hamiltonian is written as a sum of prod-
ucts of the Q̂-box and its derivatives with respect to the
unperturbed energy. The sum is carried out by means of
the Lee-Suzuki iterative technique [16].

It is worth noting that our effective Hamiltonian is de-
rived for a two-valence-particle nucleus. Therefore, it con-
tains one- and two-body components, the former, summed
to the eigenvalues of H0, gives the theoretical single-
particle energies.

Concerning the effective transition operators, they
have been derived within the same framework of and con-
sistently with the SM Hamiltonian, employing the ap-
proach proposed by Suzuki and Okamoto in Ref. [17]. In
this context, similarly to the Q̂-box, a X̂-box is introduced
that we have calculated including diagrams up to third or-
der in the perturbation theory (see Ref. [10]).

Using this procedure, we have calculated the effective
matrix elements of one-body operators, as it is the case of
the electric-quadrupole (E2) and GT operators, for a sin-
gle particle beyond 56Ni and 100Sn. These effective matrix
elements have been used to compute the B(E2) and GT
strengths, as well as the NMEs of the 2νββ decay reported
in Sec. 3.

Table 1. Bare and effective proton-neutron matrix elements for
the model space outside 56Ni. In the last column the

corresponding quenching factors are reported (see text for
details).

nala ja nblb jb Bare Effective quenching factor
0 f5/2 0 f5/2 -2.69 -0.98 0.36
0 f5/2 1p3/2 0 -0.14
1p3/2 0 f5/2 0 0.05
1p3/2 1p3/2 3.27 2.03 0.62
1p3/2 1p1/2 -2.95 -1.62 0.55
1p1/2 1p3/2 2.95 1.71 0.58
1p1/2 1p1/2 -1.04 -0.70 0.67
0g9/2 0g9/2 4.47 3.13 0.70

Table 2. Bare and effective proton-neutron matrix elements for
the model space outside 100Sn. In the last column the

corresponding quenching factors are reported (see text for
details).

nala ja nblb jb Bare Effective quenching factor
0g7/2 0g7/2 -2.48 -1.24 0.50
0g7/2 1d5/2 0 -0.14
1d5/2 0g7/2 0 0.02
1d5/2 1d5/2 2.91 1.86 0.64
1d5/2 1d3/2 -3.10 -1.75 0.56
1d3/2 1d5/2 3.10 1.94 0.63
1d3/2 1d3/2 -1.55 -1.02 0.66
1d3/2 2s1/2 0 -0.12
2s1/2 1d3/2 0 0.09
2s1/2 2s1/2 2.46 1.60 0.65
0h11/2 0h11/2 3.76 2.60 0.69
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In order to show the effects due to the renormaliza-
tions induced by the truncation of the Hilbert space for the
0 f5/21p0g9/2 and 0g7/21d2s0h11/2 model spaces, the bare
proton-neutron matrix elements of the GT− operator are
compared with the effective ones in Tables 1 and 2. For the
sake of clarity, we also report quenching factors, namely
the ratio between the effective and bare matrix elements,
except for transitions that are forbidden for the bare GT−

operator. It is worth mentioning that the values shown in
Table 2 were taken from [10].

From both Tables, we see that all effective matrix el-
ements, as expected, are reduced with respect to the bare
ones, but the reduction factor depends on the initial and
final states, ranging from 0.36 to 0.70 in Table 1 and from
0.50 to 0.69 in Table 2. So, microscopic renormalizations
lead to selective effects and in particular make forbidden
off-diagonal matrix elements different from zero, which is
not possible when using an empirical quenching factor.

In Sec. 3, we also report some preliminary results of
the 0νββ NMEs, which have been calculated employing
the bare two-body operator:

O0ν = OGT
12 −

(
gV

gA

)2
OF

12 − OT
12, (3)

where the vector and axial constants are gV = 1 and
gA = 1.269, respectively; and the GT, Fermi, and tensor
components are explicitly given by

OGT
12 = τ

−
1 τ
−
2 �σ1 · �σ2 HGT (r),

OF
12 = τ

−
1 τ
−
2 HF(r),

OT
12 = τ

−
1 τ
−
2 [3(�σ1 · r̂)(�σ2 · r̂) − �σ1 · �σ2] HT (r). (4)

Here the functions Hα(r) denote the neutrino potentials.

3 Results

The results presented in this section have been obtained by
employing the effective Hamiltonian and the transition op-
erators derived within the theoretical framework discussed
in Sec. 2. Calculations have been carried out using the
shell-model code ANTOINE [18].

We start by presenting the spectra and the E2 transi-
tion rates of 76Ge and 82Se, results for 130Te and 136Xe have
been already reported in Ref. [10]. In figs. 1 and 2, the cal-
culated low-energy spectra and B(E2) values are compared
with the experimental data for 76Ge [19, 20] and 82Se [19],
respectively. Note that arrows are proportional to B(E2)
strengths.

We see that the agreement between theory and experi-
ment for excitation energies is quite reasonable, although
not completely satisfactory. All calculated states are, in
fact, shifted up by an amount ranging from about 200 to
500 keV, which may be related to the lack of the 0 f7/2 or-
bital in our model space. The experimental E2 transition
rates, however, are well reproduced by our calculations,
testifying the reliability of our shell-model wave functions
and effective electric-quadrupole transition operator. The
error, in fact, is at most 30% except for the B(E2; 0+ → 2+)
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Figure 1. Comparison between theory and experiment of spectra
and B(E2) strengths (in e2fm4) in 76Ge.
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Figure 2. Comparison between theory and experiment of spectra
and B(E2) strengths (in e2fm4) in 82Se.

in 82Se. In this case, the calculated value is 3 times larger
than the experimental one.

In Table 3 we report the results of the total GT−

strength, S (GT−), that is defined as

S (GT−) =
∑

f

∣∣∣∣〈Φ f

∥∥∥∥∑ j �σ jτ
−
j

∥∥∥∥Φi〉
∣∣∣∣
2

2Ji + 1
(5)

where Φi refers to the ground state of the parent nucleus,
while Φ f to all the possible final states in the daughter nu-
cleus up to a given energy.

The total GT− strengths are calculated using both the
bare and effective GT− operators for 76Ge, 82Se, 130Te and
136Xe. They are compared with the experimental values
extracted from single charge-exchange experiments [21–
24]

From the inspection of Table 3, it can be seen that
while the S(GT−)s calculated with the bare operators are

3
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Table 3. Calculated and experimental total GT− strengths up to
3 MeV excitation energy for 76Ge, 82Se, 130Te, and up to 4.5

MeV for 136Xe (see text for details).

Bare Effective Experimental
76Ge 2.98 1.06 1.02 ± 0.16
82Se 2.49 0.79 0.83 ± 0.10
130Te 2.55 0.84 0.75 ± 0.05
136Xe 3.21 0.94 1.33 ± 0.07

significantly larger that the experimental ones, a quite
good agreement between theory and experiment is ob-
tained when using the effective operators. This underlines
the crucial role played by the many-body renormalization,
that, as shown in Table 1, leads to a strong reduction of the
bare matrix elements of the GT− operator. As a matter of
fact, for all the nuclei under investigation the theoretical
total GT− strengths are reduced by a factor around 3.

As regards the 2νββ decay we have calculated the
NMEs, as defined by the following expression

MGT
2ν =

∑
n

〈0+f
∥∥∥�στ−

∥∥∥1+n 〉〈1+n
∥∥∥�στ−

∥∥∥0+i 〉
En − (Mi − Mf )/2

, (6)

where En is the excitation energy of the n-th Jπ = 1+ state,
E0 =

1
2 Qββ + ∆M, Qββ being the Q-value corresponding

to the ββ decay, and ∆M the mass difference between the
parent and intermediate nuclei.

In fig. 3, we report a correlation plot between the ex-
perimental and calculated NME values. The experimental
data have been taken from Ref. [25], where they are cal-
culated from the measured half-life values for the 2νββ
decay, T 2ν

1/2, using the relation

[T 2ν
1/2]−1 = G2ν[MGT

2ν ]2, (7)

The NMEs calculated with the bare GT operator are
reported as blue dots, and those obtained employing the
effective one with black triangles.
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Figure 3. Correlation plot between experimental and calculated
2νββ NMEs (see text for details).

As can be seen, the position of the blue dots evi-
dences that the NMEs calculated with the bare GT oper-
ator are largely overestimated with respect to the experi-
mental ones, while the fundamental role played by the ef-
fective GT operator is supported by the fact that the black
triangles lie very close to the bisector of the correlation
plot.

Finally, in fig. 4 we present our results for the 0νββ de-
cay NMEs, obtained employing the bare operator. The cal-
culation of the effective two-body operator is under way,
and the results will be the subject of a forthcoming pa-
per [26]. Our theoretical NMEs for 76Ge, 82Se, 130Te, and
136Xe (black dots), calculated summing only the GT and
Fermi contributions, are compared with those obtained in
other SM calculations, that have employed the same model
space and 0νββ decay operator, but different SM Hamil-
tonians. More precisely, we refer to the results of the
Strasbourg-Madrid group (blue dots) [27], and those of
Horoi and coworkers (red dots) [28, 29].
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Figure 4. 0νββ NMEs calculated with different SM calculations,
including present ones (see text for details).

From the inspection of fig. 4, it can be observed that all
SM calculations, for all nuclei under investigation, provide
NME values very close to each other, notwithstanding the
different employed Hamiltonians. This outcome can be
considered as a benchmark for the SM eigenfunctions, and
supports the SM approach to predict reliable 0νββ NMEs.

4 Summary and Perspectives

In the present paper, we have presented the results of real-
istic SM calculations for 76Ge, 82Se, 130Te, and 136Xe, with
special attention to their GT decay properties.

In these calculations, the SM Hamiltonian, including
both the two-body matrix elements and single-particle en-
ergies, as well as the transition operators are calculated
by way of the many-body perturbation theory, starting
from a low-momentum interaction derived from the high-
precision CD-Bonn free NN potential. This means that
renormalization effects due to the reduction of the Hilbert
space are included in our theoretical effective operators,
without resorting of any empirical parameters.
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From the inspection of fig. 4, it can be observed that all
SM calculations, for all nuclei under investigation, provide
NME values very close to each other, notwithstanding the
different employed Hamiltonians. This outcome can be
considered as a benchmark for the SM eigenfunctions, and
supports the SM approach to predict reliable 0νββ NMEs.

4 Summary and Perspectives

In the present paper, we have presented the results of real-
istic SM calculations for 76Ge, 82Se, 130Te, and 136Xe, with
special attention to their GT decay properties.

In these calculations, the SM Hamiltonian, including
both the two-body matrix elements and single-particle en-
ergies, as well as the transition operators are calculated
by way of the many-body perturbation theory, starting
from a low-momentum interaction derived from the high-
precision CD-Bonn free NN potential. This means that
renormalization effects due to the reduction of the Hilbert
space are included in our theoretical effective operators,
without resorting of any empirical parameters.

The results report here are part of a study – started with
our previous work on nuclei around 132Sn [10] – we have
undertaken with the main aim to test our approach to the
calculation of the 0νββ decay NME.

The calculated energy spectra, electric-quadrupole
transitions, GT strengths and NMEs of the 2νββ decay are
in good agreement with experimental data and the quality
of the results is very similar for all the four nuclei under
investigation.

This opens up good prospects to a fully microscopic
calculation of 0νββ decay NME. In this connection, we
have reported results of this matrix element for 76Ge, 82Se,
130Te, and 136Xe, by using the bare 0νββ decay operator
and including only its GT and Fermi components. We
have found that our matrix elements are very close to those
obtained in other SM calculations, that employ the same
model space and 0νββ decay operator, but different SM
Hamiltonians. This may be seen as another proof of the
reliability of our wave functions.

Our next step towards the calculation of the 0νββ de-
cay NME is the derivation of the effective operator within
the theoretical framework described in Sec. 3, by consid-
ering also the tensor component. Then, there also other
effects that we plan to include in the renormalization of
the decay operators, as, for instance, the contributions of
three-body correlations among the valence nucleons, the
so-called blocking effect, and those arising from the quark
structure of nucleons. As mentioned above, work along
these lines is under way.
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