Generation of Ultra-Short Microwave Pulses in a Tunable Gyrotron with Subsequent Compression

R.M. Rozental, I.V. Zotova, N.S. Ginzburg, V.P. Tarakanov

1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia, RRZ@appl.sci-nnov.ru
2 Moscow Engineering Physics Institute, Moscow, Russia
3 Joint Institute for High Temperatures, RAS, Moscow, Russia

Generation of ultrashort electromagnetic pulses is of interest for many applications. A well-known method for obtaining such pulses is based on the compression of a frequency-modulated signal in a dispersive medium [1]. In principle, as such media, one can use regular waveguides. However, in this the frequency range optimal for compression is very close to the critical frequency, where the dispersion of the wave is most pronounced. This creates problems for ensuring matching in the operating band of the input chirped source. In [2,3] for solution of this problem, the compression in the helical waveguides is proposed. But in high-frequencies band such systems are rather complicated for manufacturing.

In this paper we suggest the two-stage scheme of generation of multi kilowatts subnanosecond microwave pulses based on a gyrotron matching directly with a compression section in the form of a regular waveguide. It is well-known, that gyrotrons typically have a rather narrow band of frequency tuning (~0.1-0.3%). However, as it was shown in [4], significant widening of the generation band in gyrotrons can be achieved with using of a shortened interaction space due to the weaker sensitivity to the velocity spread in the electron beam. The required frequency tuning of 5% can be provided due to excitation of several axial modes.

In the second stage, the radiation is compressed in a regular waveguide connected directly to the gyrotron resonator. As a result, the output radiation represents the subnanosecond pulse with power of 80 kW.

This research was performed within the framework of the RFBR project No. 18-08-00717.

References

5. Tarakanov, V.P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc. // EPJ Web of Conferences. 2017. V. 331. Art.no. 04024.