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Abstract. A determination of fundamental constants using HD+ ion 
spectroscopy data is discussed from comparisons between precision 
measurements and accurate theoretical predictions by taking into account 
recent measurements and updated CODATA values of the fundamental 
constants. The deuteron-proton mass ratio is determined with an 
uncertainty of 10-9. The ratio between the HD+ reduced mass and the 
electron mass is determined with an uncertainty of 7.3 × 10-10. The 
Rydberg constant, the proton-electron mass ratio and the deuteron-electron 
mass ratio are consistently determined with 10-9, 10-6, and 10-6 level 
uncertainties from an adjustment of the (v,L)=(0,0)→(0,1) and 
(v,L)=(0,2)→(8,3) HD+ ion transitions and of the 
(n,l,j,f)=1S1/2f=1→2S1/2f=1 atomic hydrogen transition. The result of the 
adjustment provides a test of the consistency of the two-body and three-
body quantum electrodynamics energy level calculations for the atomic 
hydrogen and the HD+ ion.  

1 Introduction 

The comparison between the results of precision measurements with atoms and 
molecules and the predictions of the quantum electrodynamics (QED) allowed to test the 
validity of the theory and to determine the values of fundamental constants [1]. The 
hydrogen molecular ions are the simplest three-body quantum systems. Ab-initio 
calculations of their energy levels in their electronic ground state can be performed 
accurately. The frequencies of the fundamental rovibrational transitions of H2

+ and HD+ 
ions can be predicted with an uncertainty by 8 × 10−12 [2]. The determination of 
fundamental constants, especially of the proton-electron mass ratio, as it was proposed by 
[3], is performed through a comparison between experimental data and theoretical 
predictions. The experimental setups with hydrogen molecular ions maintained in 
radiofrequency traps and sympathetically cooled by laser-cooled Be+ ions provided accurate 
experimental data. Some HD+ transitions have been measured by Doppler spectroscopy : 
(v,L)=(0,2)→(4,3) with 2.3 × 10−9 uncertainty [4], (v,L)=(0,0)→(1,1) with 1.1 × 10−9 
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uncertainty [5] and (v,L)=(0,2)→(8,3) with 1.1 × 10−9 uncertainty [6, 7]. Recently, HD+  
rotational spectroscopy in the Lamb-Dicke regime of the transition (v,L)=(0,0)→(0,1) 
pushed the uncertainty at 3 × 10−10 [8] and allowed a determination of the proton-electron 
mass ratio with an uncertainty at the 10-9 level. 

This contribution addresses the determination of fundamental constants by exploiting 
HD+ spectroscopy data. On one hand, the values of theoretical frequencies of HD+ 
transitions have been recalculated recently [9] by using CODATA 2014 recommended 
values of fundamental constants [1] and by taking into consideration additional QED 
correction terms. This contribution proposes a determination of the deuteron-proton mass 
ratio from a comparison between calculated and experimental frequencies of HD+. On the 
other hand, the energy levels of atomic hydrogen and deuterium have been accurately 
predicted by two-body QED calculations (see, for example [1]) and some transitions have 
been very accurately measured. For example, the 1S-2S H transition have been measured 
with 4.2 × 10−15 uncertainty [10], the H-D isotopic shift of the 1S-2S transition with an 
uncertainty of 2.2 × 10−11 [11] and the 1S-3S H transition with 4.4 × 10−12 uncertainty [12]. 
This contribution demonstrates that a determination of several fundamental constants is 
possible by merging in an adjustment HD+ spectroscopy data and atomic hydrogen 
spectroscopy data. The agreement between the determined values of fundamental constants 
and the CODATA values can be interpreted as a check of the consistency of two-body and 
three-body QED calculations and of the validity of the experimental results. 

2 Energy levels, sensitivities to constants, and theory-
spectroscopy data 

The energy levels of HD+ ions may be expressed with three-body QED calculations as a 
series expansion [13-18] : 
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that depends on the Rydberg constant R∞, the proton-electron mass ratio µpe = mp/me, the 
deuteron-electron mass ratio µde = md/me, the fine-structure constant α, the proton radius rp, 
the deuteron radius rd, and the Bohr radius a0 = α/4πR∞. The first term is the nonrelativistic 
energy, the next term is a series expansion of relativistic and QED corrections expressed 
with α, Zp,dα (Zp,d is the nuclear charge of the proton or deuteron), and me/mp,d. The function 
FQED contains terms proportional with natural powers αp, with logarithmic expressions 
αplnq(Zp,dα)-r depending on natural powers of p, q and r, and with natural powers (me/mp,d)

k, 
respectively. The last two terms in Eq. (1) are the leading-order corrections for the finite-
size of the proton and the deuteron. The dependence is proportional to the square of the 
ratio between the nuclear charge radius and the Bohr radius. The coefficients fs

d,pA  are 

proportional with the squared density of the wavefunction at the electron-to-nucleus 
coalescence point. 

The non-relativistic energy can be calculated by solving the three-body Schrödinger 
equation using a variational approach [13]. The accuracy of the calculations has been 
improved by taking into account relativistic and radiative corrections of orders R∞α2 and 
R∞α3, and, partially, of order R∞α4 as well as contributions arising from the finite-size 
structure of the proton and deuteron [14]. All corrections of order R∞α4 were estimated in 
[15] using the adiabatic approximation [16]. The accuracy was improved by taking into 
account corrections of order R∞α5 [17, 18], and second-order perturbation terms in the 
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adiabatic approximation and corrections of order R∞α6 [19], respectively. The recalculated 
frequencies of HD+ transitions [9] that are exploited in this contribution have a theoretical 
accuracy of about 8 × 10-12. 

The sensitivity coefficient of a transition at frequency f to a constant c is : 
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Here, the frequency f0 is calculated with the set of the recommended values of 
fundamental constants {c0} given by CODATA. The sensitivities to proton-electron mass 
ratio and deuteron-proton mass ratios have been derived in [13]. Here the sensitivities of 
rotational and rovibrational transitions to both nuclear-to-electron mass ratios are exploited. 
Referring to the electron mass instead to the proton mass is currently more interesting 
because the accuracy of the value of the electron mass has been improved in CODATA 
2014. The approach requires to use new sensitivity coefficients, which are expressed using 
the chain rule for differential calculus : 
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At the first sight, Eq. (1) may be used to determine both µpe and µde, by combining 
measurements of different transitions of HD+, but that is not true. In fact, the non-
relativistic HD+ rovibrational energies may be expressed solely in function of the ratio 
between the reduced mass and the electron mass  depedepere µµµµµ   using the 

adiabatic approximation [16]. Consequently, µre is the natural choice for a mass ratio that 
can be inferred from HD+ ions. The corresponding sensitivity coefficient is derived using 
the chain rule for differential calculus : 
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Atomic hydrogen and deuterium energy levels are expressed with two-body QED 
calculations as a sum of terms depending on the principal quantum number n, the orbital 
quantum number l and the total angular momentum quantum number j : 
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Here c is the speed of light in vacuum. The first term corresponds to the Bohr energy 
corrected for the finite mass of the nucleus with a term  edp,dp,er mmmmm  . The 
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second term corresponds to the fine structure energy. The contributions arise from the Dirac 
energy from which mass energy is subtracted, the relativistic recoil corrections, the one-
photon electron self-energy, the hadronic and leptonic vacuum polarization, the two and 
three-photon corrections, the radiative recoil corrections, the self-energy of the nucleus and 
the higher-order finite nuclear size corrections, which are discussed in [1, 20, 21]. The last 
term corresponds to the leading order correction for the finite nuclear size, that is expressed 
on the last line of Eq. (5). Here C  is the Compton wavelength divided by 2. The 

previous formula is used here to calculate atomic hydrogen and deuterium energy levels 
using CODATA 2014 values of the fundamental constants. The uncertainties of the 
theoretical calculations are given in [1], Table XVI. The theoretical accuracy is determined 
by the two-loop QED corrections. 

 

Table 1. Sensitivity coefficients to constants for selected HD+ ion,                                               
atomic hydrogen, and deuterium transitions. 

Label v L v' L' Kµre Kµpe Kµde 109 × Krp 109 × Krd 

HD+[1] 0 0 1 1  -0.4846  -0.3230  -0.1616  -6.3384  -3.7898 

HD+[2] 0 2 4 3  -0.4380  -0.2919  -0.1461  -6.1486  -3.6728 

HD+[3] 0 2 8 3  -0.4653  -0.3101  -0.1552  -6.8428  -4.0878 

HD+[4] 0 0 0 1  -0.9868  -0.6577  -0.3291  -1.0598  -6.3457 

H[1] (n,l,j)=1S1/2→2S1/2 0.0005443  0.0000  -0.8502  0.0000 

H[2] (n,l,j)=1S1/2→3S1/2 0.0005443  0.0000  -0.7897  0.0000 

D[1] (n,l,j)=1S1/2→2S1/2   0.0000 0.0002724  0.0000  -4.9133 

 
The sensitivity coefficients to different constants for some HD+ transitions that have 

been measured previously are calculated here by using Eq. (1-4) and shown in Table 1. The 
values of the sensitivity coefficients for the non-relativistic HD+ energy levels to µpe and µdp 
are taken from [13], that provides calculations up to v=4 level. The term FQED brings a 
negligible contribution to the values of the sensitivity coefficients to µpe, µde, and µre, 
respectively. The sensitivity coefficients to α are not addressed here. The sensitivity 
coefficients to R∞ are assumed for all HD+ transitions to be equal to 1. The sensitivity 
coefficients to rp and rd are derived using finite-size correction parameters from [14]. The 
sensitivity coefficients for the (v,L)=(0,2)→(8,3) transition are obtained by extrapolation of 
calculations up to v=4 level using a polynomial dependence on v of the 4th degree. The 
value of the sensitivity to µpe calculated by extrapolation is higher by 24% than the value 
reported in [9]. In addition, the sensitivity coefficients to different constants for selected 
atomic hydrogen and deuterium transitions are calculated using Eq. (2,5) and shown also in 
Table 1. The sensitivity coefficients to R∞ are assumed to be equal to 1, because of the 
common factor mec

2 in all terms of the two-body QED calculations. Note that the 
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sensitivities to µpe for the (n,l,j)=1S1/2→nS1/2 atomic hydrogen transitions have the same 
value, while the sensitivities to rp have different values. 

 

Table 2. Comparison between experimental and theoretical data.                                                      
The uncertainties on the last digits are given in parentheses. 

Transition fexp (kHz) fth (kHz) ftot/fth 

×109 
(fexp-fth)/fth 

×109 

HD+ (v,L)=(0,0)→(1,1) 58605052000(64) 58605052157.5(5)  1.1  -2.7 

HD+ (v,L)=(0,2)→(4,3) 214978560600(500) 214978560967.8(1.7)  2.3  -1.7 

HD+ (v,L)=(0,2)→(8,3) 383407177380(410) 383407177208(3)  1.1  0.45 

HD+ (v,L)=(0,0)→(0,1) 1314935828.0(4) 1314935827.3(1.0)  0.82  0.53 

H (n,l,j,f)=1S1/2,f=1→2S1/2 ,f=1 2466061102474.806(10) 2466061102554.5(2.2)  0.00089  -0.032 

 
 

 
Experimental frequencies for HD+ transitions measured previously are shown in Table 

2, together with their absolute uncertainties. The contribution of the hyperfine structure is 
subtracted to yield the value of the rotational or rovibrational frequency. The experiments 
are described in [4-7]. The theoretical predictions for the frequencies of these HD+ 
transitions and their absolute uncertainties are taken from [8, 9] and shown in Table 2. For 
the transition (v,L)=(0,0)→(0,1), the experimental uncertainty is lower than the theoretical 
uncertainty. The fractional uncertainty for each transition, shown on the fourth column of 
Table 2, is the ratio between the quadratic sum of the theoretical and experimental 
uncertainties and the theoretical frequency. The last column of Table 2 gives the offsets 
between each experimental result and theoretical prediction, relative to the corresponding 
theoretical prediction. The transition (v,L)=(0,0)→(1,1) has an uncertainty of 1.1 × 10-9  and 
the largest relative offset of 2.3 × 10-9. The transition (v,L)=(0,0)→(0,1) has an offset of 
0.53 × 10-9 and the smallest uncertainty of 0.81 × 10-9. 

 
This contribution addresses the hyperfine component of the atomic hydrogen transition 

(n,l,j,f)=1S1/2f=1→2S1/2f=1, which has been measured with 10 Hz accuracy [10]. Linking 
the experimental frequency to the theoretical prediction allowed a determination of the 
Rydberg constant using the equation [21] :  
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The second line of the previous equation contains contributions from a R∞-driven gross 
structure term and from the difference between the corresponding fine structure and finite 
nuclear size theoretical energies. The third line corresponds to the difference between the 
corresponding hyperfine structure energies and is determined from measurements of 1S and 
2S atomic hydrogen hyperfine intervals. Note that the theoretical values indicated in Eq. (6) 
are calculated [21] using a value of rp = 0.84087(39) fm provided by measurements in 
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muonic hydrogen [22], which differs significantly and is more precise than the value of rp 
provided by CODATA 2014. However, the binding energies of the 1S and 2S hyperfine 
states of the atomic hydrogen change by the same amount when rp is changed from the 
muonic hydrogen value to the CODATA value [21]. Data concerning the atomic hydrogen 
transition is reproduced on the last line of Table 2. 

3 Results and discussion 

The frequencies of the HD+ ion and of the atomic hydrogen and deuterium transitions 
depend on six fundamental constants: R∞, µpe, µde, α, rp, and rd. The values of R∞, α, rp, rd 
may be determined from other physical systems with an accuracy that is orders of 
magnitude better than the accuracy provided by HD+ ion spectroscopy results. These 
fundamental constants are fixed to their CODATA 2014 values [1] and the approach is 
focused on the determination of mass ratios. 

A number of N1 transitions, for which the frequencies were measured and calculated, 
are used to determine a number of N2 fundamental constants using a least-squares 
adjustment similar to that of CODATA. The dependence of the transition frequencies on 
the constants is linearized and expressed in a matrix form Y = AX, where Y = {y1,y2,…,yN1} 
is a column of N1 elements yi = (fi−fi,0)/fi,0, and X = {x1,x2,…,xN2} is a column with N2 
elements xj = (cj−cj,0)/cj,0. A is the N1 × N2 sensitivity matrix with elements aij = 

d(lnf0,i)/d(lnc0,j). The covariance matrix G of the solution X̂  is expressed in terms of the 
covariance matrix of the input data V and the sensitivity matrix as :  

       11T AVAG
         (7) 

The covariance matrix of the input data V is constructed as follows : the uncertainty is 
the root-mean-square sum of the experimental and theoretical uncertainties and the 
covariances are given by the covariances of the predictions. It is assumed here that the 
experimental frequencies are not correlated and the correlation coefficients of the 
theoretical frequencies are equal to 1. The correlation arises from the uncalculated terms in 
the energy levels that are expressed in terms of a common factor arising, for example, from 
the overlapping of the electron wavefunction with the extended nuclear charge distribution. 
The solution of the least squares adjustment in the linear approximation is expressed as :  

     YVGAX̂ 1T          (8) 

Values for the reduced mass µre of the HD+ ion may be determined from adjustments of 
HD+ transitions, as it is shown in Table 3 (a). The accuracy of the determination is beyond 
the 10-9 level by using all measured HD+ rotational and rovibrational transitions. The results 
are exploited to determine a value of µdp using the accurate CODATA 2014 value for µde :  
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The second line of the last equation gives the accuracy of µdp determination, which is 
calculated using the uncertainty propagation law by assuming that µde and µre values are not 
correlated. The results of the adjustments are shown in Table 3 (b).  The lowest uncertainty 
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of the determination of µdp is 1 × 10-9 and remains about the same value if all HD+ data or 
only the HD+ (v,L)=(0,0)→(0,1) rotational transition is adjusted. For comparison, the 
uncertainty of the determination of µpe using rovibrational HD+ transitions [9] is more than 
2.5 times higher. The HD+ transition (v,L)=(0,0)→(1,1), with a discrepancy between the 
theoretical prediction and the measured frequency, leads to a higher ratio between the 
deviation between the determined µdp and the CODATA 2014 µdp value and the absolute 
uncertainty of the µdp. 

 

Table 3. Determination of µre and µdp from HD+ ion spectroscopy data. The second column gives     
the adjusted values of the constants with their uncertainties in parentheses. The quantity                         

1µ = (µ/µ) × 109 indicates the fractional uncertainty of the adjusted constant and the quantity        
2µ = (µ - µC14)/µ is the ratio between the deviation of the value of the constant from the 

corresponding value given by CODATA 2014 and the uncertainty of the adjusted constant. 

(a) Adj. µre 1µre 2µre 

HD+[1] 1223.8992357(28) 2.3 2.5 

HD+[2] 1223.8992337(65) 5.3 0.74 

HD+[3] 1223.8992277(28) 2.3  -0.42 

HD+[4] 1223.8992283(10) 0.83  -0.65 

HD+[3,4] 1223.89922820(96) 0.78  -0.75 

HD+[1-4] 1223.89922908(90) 0.73 0.18 

    
(b) Adj. µdp 1µdp 2µdp 

HD+[1] 1.9990074842(68) 3.4  -2.5 

HD+[2] 1.999007489(16) 8.0  -0.74 

HD+[3] 1.9990075037(69) 3.4 0.42 

HD+[4] 1.9990075024(25) 1.2 0.65 

HD+[3,4] 1.9990075026(23) 1.2 0.75 

HD+[1-4] 1.9990075004(22) 1.1  -0.18 

 
Merging all HD+ ion data and the atomic hydrogen data from Table 2 in an adjustment 

may allow conjoint determination of µpe and µde. The uncertainty of the determination is 
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(µpe, µde) = (1.5 × 10-9, 5.0 × 10-9). The adjustment leads to significant deviations 
between the adjusted values of the constants and the corresponding values given by 
CODATA 2014. The ratios between these deviations and the CODATA 2014 values of the 
corresponding constants, expressed as C14µ = (µ - µC14)/µC14, have the following values 
(C14µpe, C14µde) = (-6.1 × 10-8, 1.2 × 10-7). They are higher than the CODATA 2014 
uncertainties of the corresponding constants. This inconsistency can be related to the 
calculation of the energy levels or to unevaluated systematic frequency shifts. 

The Rydberg constant appears as a common factor in the expression of atomic hydrogen 
and HD+ ion energy levels, acting as a converter between two-body QED calculations and 
three-body QED calculations. The most accurate experimental data, that is the 
(v,L)=(0,0)→(0,1) and (v,L)=(0,2)→(8,3) HD+ transitions, and the atomic hydrogen 
(n,l,j,f)=1S1/2f=1→2S1/2f=1 transition, is exploited here for an adjustment of R∞, µpe, µde. 
The results are shown in Table 4. The deviations between the determined values of the 
constants and the corresponding CODATA 2014 values and the absolute uncertainties of 
the constants have the same order of magnitude. The uncertainties of the adjusted constants 
are (R∞, µpe, µde) = (7.5 × 10-10, 1.4 × 10-6, 2.7 × 10-6). The proton and deuteron radii are 
highly correlated to the Rydberg constant in the CODATA 2014 adjustment. The expected 
deviations induced on rp, rd by the change of the value of the Rydberg constant are smaller 
than the uncertainties of rp, rd, respectively. The result of this adjustment can be interpreted 
as a test of the consistency of the two-body and three-body QED energy level calculations 
in atoms and molecules. 

 

Table 4. Determination of R∞, µpe and µde from HD+ ion and atomic H spectroscopy data. The lines of 
the table give the adjusted value of each constant with the uncertainty on the last digits in parentheses, 

the fractional uncertainty, and the ratio between the deviation of the adjusted constant from its 
CODATA 2014 value and the uncertainty of the adjusted constant, respectively. 

Adj. HD+[3,4] & H[1] 

R∞ (m-1) 10973731.5727(82) 

R∞/R∞ 7.5 × 10-10 

(R∞ - R∞,C14)/R∞ 0.51 

µpe 1836.1512(25) 

µpe/µpe 1.4 × 10-6 

(µpe - µpe,C14)/µpe  -0.56 

µde 3670.4885(101) 

µde/µde 2.7 × 10-6 

(µde - µde,C14)/µde 0.56 
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4 Conclusion 

Determination of fundamental constants is discussed by exploiting comparisons 
between theoretical and experimental frequencies for HD+ ion and atomic hydrogen. The 
value of µdp is determined with an uncertainty of 1.1 × 10-9 by exploiting four HD+ 
rotational and rovibrational transitions. This uncertainty is 12 times higher than the 
uncertainty of the CODATA 2014 value of µdp. In addition, the dependence of the HD+ 

energy levels on the reduced mass is exploited for a determination of the ratio between the 
reduced mass and the electron mass with an uncertainty of 7.3 × 10-10. An adjustment of 
HD+ ion and atomic hydrogen data provides a determination of R∞, µpe, µde with 
uncertainties of 7.5 × 10-10, 1.4 × 10-6, and 2.7 × 10-6, respectively. This adjustment may be 
interpreted as a consistency test of the values of CODATA 2014 fundamental constants and 
of the two-body and three-body QED energy level calculations. A further step would be to 
exploit two-photon spectroscopy of H2

+ and HD+ to determine conjointly R∞, µpe, µde, rp and 
rd, as it was suggested in [22, 23]. This approach will provide new clues in the proton and 
deuteron radius puzzle [24] and will allow new tests of the quantum electrodynamics [25]. 
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