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Abstract. We report an update of the isobar model EtaMAID. A new approach
is proposed to avoid double counting in the overlap region of Regge and res-
onances. Dispersion relation is applied on top of the isobar model, and both
models describe the data equally well. Application of these ideas to pion pho-
toproduction is discussed.

The isobar model EtaMAID is part of the Mainz MAID project [1, 2] with online pro-
grams performing real-time calculations of observables, amplitudes and multipoles. Eta-
MAID was introduced in 2001 [3] as a model with 8 prominent nucleon resonances, Born
terms and t-channel ρ, ω-exchanges. The 2003 update of EtaMAID featured a reggeized
isobar model for p(γ, η)p, and an extension to p(γ, η′)p in the threshold region. Recently,
high-intensity polarized photon beams with modern 4π detectors and spin-polarized targets
at Mainz [4], Bonn [5], and Jlab i[6] have provided new information about η and η′ photo-
production. At the GRAAL [7] and the LEPS [8] facilities, photon beams with high linear
polarization are available. Eta photoproduction on the nucleon has been studied in various
theoretical approaches, e.g. isobar models [3, 9–13], dispersion theoretical calculations [13–
15], and coupled channels partial wave analyses (PWA) [16–18].

Here, we report an update of the isobar EtaMAID, and apply dispersion relations to study
the effect of the analyticity, unitarity and crossing constraints.

1 Formalism

For η photoproduction on the nucleon, we consider the reaction γ(k)+N(pi)→ η(q)+N′(p f ).
The Mandelstam variables are s = W2 = (pi + k)2, t = (q − k)2, u = (p f − q)2, and
their sum is fixed by s + t + u = 2m2

N + m2
η, where mN and mη are masses of proton and η

meson, respectively. The crossing symmetrical variable is ν = (s − u)/4mN . The nucleon
electromagnetic current for pseudoscalar meson photoproduction can be expressed in terms
of four invariant amplitudes Ai [19], Jµ =

∑4
i=1 Ai(ν, t) Mµ

i , with the gauge-invariant four-
vectors Mµ

i given by

Mµ
1 = −

1
2

iγ5 (γµ/k − /kγµ) , Mµ
2 = 2iγ5

(
Pµ k · (q −

1
2

k) − (q −
1
2

k)µ k · P
)
,

Mµ
3 = −iγ5 (γµ k · q − /kqµ) , Mµ

4 = −2iγ5 (γµ k · P − /kPµ) − 2mN Mµ
1 , (1)
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with Pµ = (pµi + pµf )/2. The invariant amplitudes are written in terms of nucleon reso-
nance contributions, and background consisting of Born terms and t-channel vector meson
exchanges,

Ai = ARes
i + ABorn

i + AV M
i . (2)

1.1 Isobar model

In the isobar model, the resonances are introduced on the level of partial waves in the
direct channel. To that end, the multipole decomposition of the invariant amplitudes in
the center-of-mass frame of the pion and the final nucleon is performed [20, 21], AI

i =∑
`

{
aI

i,`±EI
`±(W) + bI

i,`±MI
`±(W)

}
, with EI

`± and MI
`± the multipoles describing the electric and

magnetic transition to the πN-state with the angular orbital momentum ` and the total orbital
momentum j = l±1/2, and isospin I. The multipoles are functions of W only, and the angular
dependence in terms of Legendre polynomials and their derivatives is contained in the coeffi-
cients a, b. We generically denote the quantum numbers of partial waves by α = α{ j, `, I}. For
a given partial wave α, a set of Nα nucleon resonances are added as generalized Breit-Wigner
functions with a unitarity phase Φ for each resonance,

tα,rγ,η(W) =

Nα∑
j=1

tα,BW, j
γ,η (W) eiΦ j . (3)

The (energy-independent) phase Φ j, is new for our EtaMAID models but has always been
applied in pion production. While in γ, π the Watson theorem determines the phase Φ j at
least below the ππ threshold, in η and η′ production we have no theoretical guideline and use
Φ j as a fit parameter.

The Born terms for η and η′ photoproduction play a minor role: while the πNN coupling
is very large, g2

πNN/4π ≈ 14, for η and η′ photoproduction g2
ηNN/4π ∼ g

2
η′NN/4π . 0.1 [22].

Unlike in pion production, the physical region for η, η′ production starts at considerably
high energy. Already at ν ∼ 2 GeV the low-t data are well-represented by Regge exchanges.
The reggeization is achieved by replacing the meson propagator by the Regge propagator

1
t − M2 ⇒ D(s, t) =

(
ν

ν0

)α(t)−1
πα′

sin[πα(t)]
S + e−iπα(t)

2
1

Γ(α(t))
, (4)

where M is the mass of the Reggeon, S is the signature of the Regge trajectory (S = −1
for vector and axial-vector mesons), and ν0 = 1 GeVis a mass scale. The Gamma function
Γ(α(t)) is introduced to suppress unphysical poles at integer negative t. The parameters of the
Regge amplitudes are taken from a recent Ref. [23]. To make use of all the data available for
η photoproduction we use a background function that is a continuation of the Regge ampli-
tude in the resonance region. However, adding Regge and resonances together one runs into
the well-known double-counting problem: when projected on the s-channel partial waves,
Regge amplitude generates resonance-like structures seen as the so-called Schmid loops on
the Argand diagram for each partial wave [24], and extraction of resonance parameters be-
comes ambiguous. Here we propose a new method to avoid double-counting by introducing a
damping factor Fd(W) that vanishes at the threshold and approaches unity above some energy,

ARegge
i → Fd(W)ARegge

i with Fd(W) = (1 − Exp[(Wthr −W)/ΛR]) θ(W −Wthr) . (5)

The scale ΛR describes at which energy Regge description fully sets in and is obtained from
a fit. The way this damping factor cures the double counting problem can be seen as follows.
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The duality principle states that the full amplitude can be obtained by summing an infinite
tower of either s- or t-channel resonances, A =

∑∞
i=1 AResi

s =
∑∞

i=1 AResi
t . The t-channel sum

can actually be performed, and we identify it with the Regge amplitude MRegge. In isobar
models it is only possible to account for the lowest s-channel resonances, so the s-channel
sum runs up to i = N. Then, identically

A =

N∑
i=1

AResi
s +

 ∞∑
i=1

AResi
t −

N∑
i=1

AResi
s

 ≈ N∑
i=1

AResi
s + Fd(W)ARegge. (6)

1.2 Fixed-t dispersion relations

Isobar model has been quite successful in describing data in various photoproduction pro-
cesses. However it has shortcomings, such as lack of analyticity (real and imaginary parts
of the amplitudes are independent) and crossing symmetry (resonances are added in the di-
rect channel only). To include these important physics constraints we opt to study fixed-t
dispersion relations [15]. These take the form

Re Ai(ν, t) = AB
i +

1
π
P

∫ ∞

νπ

dν′Im Ai(ν′, t)
[

1
ν′ − ν

+
ξI

i

ν′ + ν

]
, . (7)

with ξI
i = ±1 isospin-dependent crossing phases. The isobar model described in the previous

section allows to obtain the real and imaginary parts of each amplitude. We use the imaginary
parts of the amplitudes (these have resonance and Regge contributions) obtained at this first
step as input in the dispersion relation. The real part obtained from a dispersion relation
will generally differ from the isobar model fit, and the fit has to be reiterated. It was found
that this process converges already after two iterations. We present the results for differential
cross sections in the next section.

2 Results

In Fig. 1 we display MAMI data for the angular distributions in η photoproduction [25] in
comparison with the isobar and dispersion fits. It is seen that both fits give a good description
of the data. Dispersion fit seems slightly favorable at higher energies and forward angles.
The difference between the two is small as evidenced by the χ2 values indicated on the plot.

Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations May 2018, Mainz
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Figure 1. Isobar model (red
curves) and dispersion relation
(blue curves) fits compared to
MAMI [25] differential cross
section data on η photo-
production at eight values of W
indicated in each panel as
function of cos θ. Plot adopted
from [15]
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3 Outlook: application to pion photoproduction

We plan to extend the model with the modified Regge background to pion photoproduction.
There, Watson theorem requires that in each partial wave, the phase of the pion photoproduc-
tion amplitude should be equal to the pion-nucleon scattering phase. To implement Watson
theorem, thus it is necessary to perform multipole expansion not only of resonance and Born
contributions, but also the Regge background. However, expanding a Regge amplitude shown
in Eq. (4) with the damping factor of Eq. (5) leads to an oscillating behavior, as can be seen
in the middle panel of Fig. 2. The origin of these oscillations are the zeroes of the inverse
Γ-function in Eq. (4) needed to suppress unphysical poles at integer negative t. As a practi-
cal and elegant solution to the problem one can require that the trajectory remains bounded
α ≥ −1 at asymptotic momentum transfer [26], the two trajectories displayed in the left panel
of Fig. 2. The same multipole projected out of the Regge amplitude with the saturated trajec-
tory has no oscillations, as shown in the right panel of Fig. 2, and can be used for partial wave
expansion. The middle and right panels of Fig. 2 also illustrate the double-counting problem:
it is seen that a minimum of the real part (dashed curves) almost always coincides with a
maximum of the imaginary part, which is a typical resonance behavior in partial waves. This
effect is a pure artifact since the original Regge amplitude clearly has no poles in W. The
right panel of Fig. 2 demonstrates that saturating the Regge trajectory minimizes the double-
counting leaving only one oscillation. The application of these ideas to the PWA of pion
photoproduction is work in progress.
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Figure 2. Left panel: linear and saturated Regge trajectory. Middle panel: M1+ multipole obtained from
a Regge amplitude with a linear trajectory. Right panel: same for a saturated trajectory. Solid curves
show the imaginary part, dashed curves show the real part.
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