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Abstract. We study the pure-gauge QCD phase transition at finite temperatures in the
dual QCD theory, an effective theory of QCD based on the magnetic symmetry. We
formulate the effective thermodynamical potential for finite temperatures using the path-
integral formalism in order to investigate the properties of the pure-gauge QCD vacuum.
Thermal effects bring a first-order deconfinement phase transition.

1 Introduction

One of the crucial areas of high energy physics research is to examine the study of Quantum Chro-
modynamics (QCD) [1, 2], contemplated as the fundamental theory of quarks and gluons. In the
weak coupling regime of QCD, the perturbative calculations for deep inelastic scattering agree well
with experimental data. Nevertheless, in the infrared regime, the description of QCD vacuum and
non-perturbative processes yet remains as evident confront in the establishment of QCD as a local
quantum field theory. One of its utmost unusual distinctive speculation is that at sufficiently high tem-
perature (T ) or chemical potential (µB), QCD is believed to be in Quark Gluon Plasma (QGP) phase
by virtue of what color charges are screened preferably than confined [3–5]. Exploring the aforesaid
new states of matter under extreme conditions is necessary quest and such an one concisely prevail the
universe at about a few microseconds after the Big Bang. Nowadays the hottest matter has been repro-
duced recurrently in laboratory by heavy-ion collisions [6–10] of well as at the Large Hadron Collider
(LHC) [11–16]. Moreover, one of the insight which have been put onward in the recent past is that
QGP properties may be obtained by a magnetic component and such magnetic component has been
related to thermal abelian monopoles disappearing from the magnetic condensate that are assumed to
induce color confinement at low temperatures. In this paper, we formulate the effective thermody-
namical potential for finite temperatures using the path-integral formalism in order to investigate the
properties of the pure-gauge QCD vacuum at finite temperatures using dual QCD formulation based
on magnetic symmetry.

2 SU(3) Dual QCD Formulation

The formulation involves imposing the magnetic symmetry as an internal isometry H admitting some
additional Killing vector fields (m̂) with the Killing condition Lξi gAB = 0 , which are internal such
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that H is a Cartan’s subgroup of G and commutes with it satisfying the canonical commutation rela-
tion, [ ξi, ξ j ] = f k

i j ξk [17, 18]. For the case of realistic S U(3) color gauge group we consider G
as the simple non-Abelian S U(3) group and H as the little group U(1) ⊗ U

′

(1), then the homotomy
Π2(G/H)→ Π2(S U(3)/U(1)⊗U

′

(1)) is completely determined in terms of magnetic Killing vector m̂
and the monopoles thus emerge as the topological charges. The killing vector m̂ automatically selects
another m̂

′

obtained by the symmetric product of m̂,

Dµm̂
′

= 0, (1)

m̂
′

=
√

3m̂ ∗ m̂. (2)

The most general gauge potential in S U(3) QCD which satisfies the above constraints may be written
as,

Wµ = Aµ m̂ + A
′

µ m̂
′

− g−1 ( m̂ × ∂µ m̂) − g−1 ( m̂
′

× ∂µ m̂
′

), (3)

where
Aµ = m̂.Wµ, A

′

µ = m̂
′

.Wµ,

Aµ and A
′

µ are the Abelian (color electric) component of Wµ along m̂ and m̂
′

respectively while the
second part, determined completely by the magnetic symmetry are of topological in origin and are
of dual nature [17–24]. Rotating the magnetic vector m̂ to a fix time independent direction using the
following parametrization in such a way as to exhibit the full homotopy class of the mapping,

U = exp
[
−β

′

(−
1
2

t3 +
1
2

√
3t8)

]
× e−αtn exp

[
−(β −

1
2
β
′

)t3e−αt2
]
, (β = nϕ, β

′

= n
′

ϕ), (4)

where ti (i= 1, 2,3,......8) are the adjoint representations of the S U(3) generators. This leads to the
value of gauge potential with proper choices of Aµ and A

′

µ, in the following form,

Wµ
U
−→g−1

[(
(∂µβ −

1
2
∂µβ

′

)cosα
)
ξ̂3 +

1
2

√
3(∂µβ

′

cosα)ξ̂8

]
, (5)

where

Aµ = −
1

2g
sin2α∂µβ

′

, A
′

µ = 0. (6)

The non-trivial dual structure of the QCD vacuum, become more transparent in absence of quarks and
may be reduced in the following form,

£ = −
1
4

B2
µν −

1
4

B
′

µν
2 + |(∂µ + i

4π
g

B(d)
µ )φ|2 + |(∂µ + i

4π
√

(3)
g

B
′

µ
(d))φ

′

|2 − V(φ∗φ). (7)

where

V =
48π2

g4 λ(φ∗φ − φ2
0)2 +

432π2

g4 λ
′

(φ∗φ
′

− φ
′

0
2)2, (8)

and φ0 and φ
′

0 are the non-zero vacuum expectation values of the fields φ and φ
′

. Further, the field
equations associated with the Lagrangian for the λ3 and λ8 components using cylindrical symmetry
and the above effective potential are derived in the following form,

d
dρ

[
ρ−1 d

dρ

(
ρB(ρ)

)]
− (16πα−1

s )1/2
(n
ρ

+ (4πα−1
s )1/2B(ρ)

)
χ2 (ρ) = 0, (9)
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1
ρ

d
dρ

(
ρ

dχ(ρ)
dρ

)
−

[(n
ρ

+ (4πα−1
s )1/2B(ρ)

)2
+ 6λα−2

s

(
χ2 − φ2

0

)]
χ(ρ) = 0. (10)

d
dρ

[
ρ−1 d

dρ

(
ρB

′

(ρ)
)]
− (48πα−1

s )1/2
(n

′

ρ
+ (12πα−1

s )1/2B
′

(ρ)
)
χ
′2 (ρ) = 0, (11)

1
ρ

d
dρ

(
ρ

dχ
′

dρ

)
−

[(n
′

ρ
+ (12πα−1

s )1/2B
′

(ρ
′

)
)2

+ 54λ
′

α−2
s

(
χ
′2 − φ

′

0
2
)]
χ
′

(ρ) = 0. (12)

Using the Lagrangian (7), the string tension of the associated flux tube configuration governed by the
field equations (9), (10), (11) and (12) may be obtained in the following form,

k (B, χ, B
′

, χ
′

) = 2π
∫ ∞

0
ρ dρ

[
1

2ρ2

(
d

dρ
(ρ B(ρ))

)2

+

(
d

dρ
χ(ρ)

)2

+

(
4π
g

B(ρ) +
n
ρ

)2

χ2(ρ)

+3λα−2
s (χ2 − φ2

0)2
]

+ 2π
∫ ∞

0
ρ dρ

[
1

2ρ2

(
d

dρ
(ρ B

′

(ρ))
)2

+

(
d

dρ
χ
′

(ρ)
)2

+

(
4π
√

3
g

B
′

(ρ) +
n
′

ρ

)2

χ
′2(ρ) + 27λ

′

α−2
s (χ

′2 − φ
′

0
2)2

]
. (13)

Imposing color reflection and the asymptotic boundary condition to the λ3 and λ8 components ap-
propriate for the large-scale behavior of QCD B(ρ)

ρ→∞
−→ −

ng
4πρ and φ

ρ→∞
−→ φ0, B

′

(ρ)
ρ→∞
−→ −

n
′
g

4
√

3πρ

and φ
′ ρ→∞
−→ φ

′

0 leads to the asymptotic solution for B(ρ) and B
′

(ρ) as B(ρ) = −
ng

4πρ [1 + F(ρ)] and

B
′

(ρ) = −
n
′
g

4
√

3πρ
[1 + G(ρ)], where the function F(ρ) and G(ρ), in asymptotic limit for the system (13)

are obtained as,
F(ρ)

ρ→∞
−→ − n + C

√
ρ exp (−mB ρ), (14)

G(ρ)
ρ→∞
−→ − n

′

+ C
√
ρ exp (−m

′

B ρ). (15)

In view of the relationship of k with Regge slope parameter and α
′

= 0.9GeV−2 and using the numer-
ical computation of equation (13), we obtain the vector and scalar glueball masses for some typical
values of strong coupling in full infrared sector of QCD presented in table 1 [25].

Table 1. The masses of vector and scalar glueball as functions of αs.

λ αs mB(GeV) mφ(GeV) κ(d)
QCD

1
4 0.25 1.74 1.21 0.69
1
2 0.24 1.63 1.68 0.99
1 0.23 1.53 2.16 1.42
2 0.22 1.42 2.89 2.05

3 QCD Phase Transition

In order to find the stable vacuum in the field theory, the effective potential formalism indicates the
vacuum energy at zero temperature and corresponds to the thermodynamical potential for finite tem-
perature. The partition functional is written as,

Z[J] =

∫
D[φ]D[B(d)

µ ]D[φ
′

]D[B
′

µ
(d)]exp(i

∫
d4x(L(m)

d − J|φ|2 − J
′

|φ
′

|2)), (16)
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where, the quadratic source term has been introduced instead of the standard linear source term.
Further, we separate the monopole field φ into its mean field φ and its fluctuation φ̃ and formulate the
effective thermodynamical potential as the function of QCD-monopole condensate expressed in the
following form,

Ve f f (φ) = 3λα−2
s (φ2 − φ2

0)2 + 27λ
′

α−2
s (φ

′2 − φ
′2
0)2 + 3

T
π2

∫ ∞

0
dkk2ln(1 − e−

√
k2+m2

B/T )

+
T

2π2

∫ ∞

0
dkk2ln(1 − e−

√
k2+m2

φ/T ) + 3
T
π2

∫ ∞

0
dkk2ln(1 − e−

√
k2+m′B

2/T )

+
T

2π2

∫ ∞

0
dkk2ln(1 − e−

√
k2+m′φ

2/T ), (17)

where
m2

B = 8πα−1
s φ

2, m2
φ = 12λα−2

s φ
2, m

′

B
2 = 24πα−1

s φ
′2, m

′

φ
2 = 108λα−2

s φ
′2. (18)

Minimization of the thermodynamical potential leads to the thermal values of the VEV of the
monopole field expressed in the following form,

< φ >(T )
0 = 0 for T ≥ Tc, < φ >

(T )
0 =

√
φ2

0 −

(4παs + λ

λ

)T 2

8
for T < Tc. (19)

and thus reveals the disappearance of the QCD monopole condensate at sufficiently high temperature
which, in turn, indicates the restoration of the magnetic symmetry and the deconfinement of the quarks
in such temperature region. The variation of < φ >(T )

0 for λ = 2 with temperature for αs = 0.22 has
been shown in figure 1 and ultimately vanishes at the critical temperature of 0.241GeV . Similarly the
variation of effective Ve f f (φ,T ) as a function of the QCD-monopole condensate φ, around the critical
temperature value for the case of αs = 0.22 coupling has been depicted in figure 1. The minimum
points of Ve f f (φ,T ) correspond to the meta-stable vacuum state and as the temperature increases, the
broken gauge symmetry tends to be restored.
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Figure 1. (Color online.) (a) The behavior of monopole condensate (< φ >(T )
0 ) with temperature (T ) and (b)

the finite temperature effective potential Ve f f (φ,T ) as a function of monopole condensate (φ) for the coupling
αs = 0.22.

4 Results and Conclusions

To establish monopole condensation in QCD, we have studied the mechanism of quark confinement
in the context of gauge theory of non-Abelian monopoles which has a built-in dual structure. The
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analysis of the dual QCD Lagrangian in the dynamically broken phase of magnetic symmetry has
been shown to lead a precise flux tube structure to the QCD vacuum which appears as a dual version
of Abrikosov vortices. Further we have investigated the behavior of the color-confinement at high
temperature by studying the change of the properties in the QCD vacuum with temperature by formu-
lating the effective potential for finite temperature using path-integral formalism. We have used the
quadratic source term instead of the linear source term which is useful to obtain the effective potential
for the negative-curvature region. Thermal effects reduce the QCD-monopole condensate and brings
a first-order deconfinement phase transition. It demonstrates that for higher temperature (T > Tc), the
magnetic symmetry tends to be restored and the system enters into the deconfinement phase. How-
ever, below Tc, the magnetic symmetry is dynamically broken pushing the system in confined phase
where the local minima of effective potential correspond to the physical stable vacuum state.
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