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Abstract. The experimental line shapes available in the BB̄∗, B∗B̄∗, hb(1P)π
and hb(2P)π channels are analysed using a theoretical EFT-based framework
manifestly consistent with unitarity and analyticity. The line shapes are calcu-
lated using a system of coupled channel integral equations with the potential
consisting of the one-pion and one-eta meson exchange interactions from the
lightest Goldstone boson octet as well as of several contact terms at leading
and subleading orders which are adjusted to minimise the overall chi squared.
The pole positions of the Zb(10610) and Zb(10650) are extracted for the best fits
corresponding to χ2/d.o.f. of the order of one.

1 Introduction

The discovery of the two charged resonances Z+
b (10610) and Z+

b (10650) by the Belle Collab-
oration [1] gave evidence of an exotic nature of these bottomonium-like states. These states
(below referred to as Zb and Z′b) were observed as peaks in the invariant mass distributions
of the Υ(nS )π± (n = 1, 2, 3) and hb(mP)π± (m = 1, 2) channels in the decays from the vec-
tor bottomonium Υ(10860) [1] and later confirmed in the elastic B(∗)B̄∗ channels [2–4]. The
decays of the Zb’s into conventional bottomonium states and a pion suggest that the minimal
quark content of these resonances is four quark. Moreover, the proximity of the Zb and Z′b to
the BB̄∗/B∗B̄ and B∗B̄∗ thresholds, respectively, together with the fact that these open-flavour
hadronic channels are by far the dominant (S-wave) decay channels of these states is regarded
as a strong evidence for a molecular nature of the Zb’s [5–7]; for an alternative scenario within
the tetraquark picture see, e.g., a review [8].

In this contribution we provide a brief summary of an effective field theory (EFT) ap-
proach to the Zb(10610) and Zb(10650) developed in Ref. [9] and used to analyse the exper-
imental data in various elastic and inelastic channels. The goal of this investigation was to
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extract the important information about these exotic states such as their pole positions and
residues using a theoretical framework that is consistent with chiral and heavy-quark spin
(HQSS) symmetries of QCD and that respects constraints on the scattering amplitudes from
unitarity and analyticity. In a recent work [10], the same EFT approach was also applied to
predict in a parameter-free way the pole positions and the line shapes of the spin partners of
the Zb states.

2 EFT approach for the Zb molecules

Prior to going to the results we discuss the key features of the EFT approach for hadronic
molecules applied to the Zb states.

• B(∗)B̄(∗) scattering near the poles of the scattering amplitudes is nonperturbative and re-
quires a resummation of the effective potential to all orders. The potential is treated pertur-
batively to a given order in Q/Λh, where Q denotes relevant soft scales and Λh ≈ 1 GeV
represents a chiral symmetry breaking scale. For the problem at hand, the soft scale Q
corresponds to the binding momenta, the pion mass and the momentum scale generated by
the splitting between the BB̄∗ and B∗B̄∗ thresholds

ptyp =
√

m δ ' 500 MeV, (1)

where δ = m∗ − m ≈ 45 MeV with m (m∗) denoting the B (B∗) meson mass. Simulta-
neously with the chiral EFT expansion, the potential is expanded around the HQSS limit.
Since ΛQCD/Mb ≈ 0.04 � 1, it suffices to include only the B∗-B mass splitting while all
interaction vertices can be constructed in line with HQSS [9].

• Employing the so-called Weinberg counting [11] that is widely used in a similar chiral EFT
approach in few-nucleon systems (see Ref. [12] for a review), one finds that at leading order
(LO) the heavy-meson potential consists of two momentum-independent, O(Q0), contact
interactions and the one-pion exchange (OPE). This type of approach with nonperturbative
pions was employed in Refs. [13, 14] in the context of spin partner states of hadronic
molecules in the c− and b−quark sectors. However, it was realized in Refs. [9, 10] that
the high-momentum contributions from the S -wave-to-D-wave BB̄∗ → B∗B̄∗ (and vice
versa) OPE transitions generate the line shapes that show a significant dependence on a
regulator. To remove this dependence a promotion of the O(Q2) S -wave-to-D-wave (S –D)
counter term to LO is required. The effect from the other contact interactions at the order
O(Q2), (namely, from two S -wave-to-S -wave terms) on the line shapes in the 1+− channel
is marginal in line with the assumed power counting.

• The effect of the inelastic channels Υ(nS )π (n = 1, 2, 3) and hb(mP)π (m = 1, 2) is included
via their coupling to the S -wave B(∗)-meson pairs. Meanwhile, the direct interactions be-
tween the pion and heavy quarkonia [15] and the coupling of inelastic channels to the
D-wave B(∗)-meson pairs are suppressed [9].

• To extend the approach to the SU(3) sector, the inclusion of the whole pseudoscalar
Goldstone-boson octet at LO is required. In the SU(2) sector, however, the effect from
the explicit treatment of the η meson exchange is negligible.

3 Formalism

The partial-wave-projected effective potential in the elastic channels reads

(Veff)αβ = (VCT
eff )αβ + (Vπ)αβ + (Vη)αβ , (2)
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where the effective contact interaction potential VCT
eff

is composed of the elastic, VCT
NLO, and

inelastic, δV , contributions, and Vπ and Vη stand for the OPE and one η meson exchange
(OEE), respectively. The indices α and β depend on the particle channel and for JPC = 1+−

are defined as

α, β = {BB̄∗(3S 1,−), BB̄∗(3D1,−), B∗B̄∗(3S 1), B∗B̄∗(3D1)}, (3)

where the individual partial waves are labelled as 2S +1LJ with S , L, and J denoting the total
spin, the angular momentum, and the total momentum of the two-meson system, respectively.
The C-parity eigenstates are defined as

BB̄∗(±) =
1
√

2

(
BB̄∗ ± B∗B̄

)
(4)

and correspond to the convention for the C-parity transformation ĈM = M̄. The explicit form
of the potentials can be found in Refs.[9, 10].

To arrive at the scattering amplitudes which contain the information about the Zb poles,
the effective potential is iterated to all orders within Lippmann-Schwinger-type integral equa-
tions. The partial-wave-decomposed coupled-channel Lippmann-Schwinger-type equations
read

Tαβ(M, p, p′) = Veff
αβ (p, p′) −

∑
γ

∫
d3q

(2π)3 Veff
αγ (p, q) Gγ(M, q) Tγβ(M, q, p′), (5)

where α, β, and γ label the basis vectors defined in Eq. (3), and the two-body propagator
takes the form

Gγ =
(
q2/(2µγ) + m1,γ + m2,γ − M − iε

)−1
, (6)

where m1,γ and m2,γ are the masses of the B(∗) mesons in the channel γ, µγ is their reduced
mass and M defines the total energy of the system. The convolution of the amplitudes (5)
with the (S-wave) point-like source result in the production amplitudes which are used in
Ref. [9] to analyse the line shapes.

4 Results

Our most advanced calculation involves (apart the OPE and OEE potentials) the following
set of low-energy constants (LECs) extracted from the best fits to data: two S -S and one
S -D elastic LECs together with five effective couplings to the inelastic channels Υ(nS )π
(n = 1, 2, 3) and hb(mP)π (m = 1, 2) at order O(Q0) plus two S -S elastic LECs at order
O(Q2). All low-energy constants were fixed from a combined fit to the experimental line
shapes in the decays Υ(10860) → BB̄∗π, B∗B̄∗π, hb(1P)ππ, and hb(2P)ππ which proceed via
the excitation of the Zb(10610) and Zb(10650) exotic states as well as from the total rates for
the decays Υ(10860) → Υ(nS )ππ (n = 1, 2, 3). The line shapes in the Υ(10860) → Υ(nS )ππ
channels could not be included in the analysis so far since they require a proper treatment of
the two-pion final-state interaction. We find that the quality of the line shape description by
the pionful fits turns out to be better than that by the contact fit at O(Q0) that is reflected in
the change of the χ2/d.o.f. from 1.29 for the contact fit to 0.83 for the most advanced pionful
fit (called fit G in Ref. [9]). In Fig.1 we present the results for our most advanced pionful fit
including the uncertainties which correspond to a 1σ deviation in the parameters including
correlations. Based on these results we extract the pole positions and the residues of the Zb

states summarized in Table 1. In order to extract these quantities, in the vicinity of a pole
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Figure 1. The fitted line shapes for the most advanced pionful fit of Ref. [9] with the uncertainties
corresponding to a 1σ deviation in the parameters of the fits. The experimental data are from Refs. [1, 4].

located at M = MRα the elastic scattering amplitude Tαα(M, p, p′) given in Eq. (5) is written
as

Tαα =
g2
α

M2 − M2
Rα

≈
g2
α

2MRα

1
M − MRα

, (7)

where g2
α and MRα stand for the residue and the pole position in the channel α, respectively.

We note that the poles shown in Table 1 reside on the Riemann Sheets which have the shortest
path to the physical sheet and reveal themselves as above threshold resonances; for a detailed
discussion on how to identify the relevant poles in a multichannel scattering problem we refer
to Ref. [10], see also a review [16].

5 Conclusions

In this contribution we gave a brief summary of the EFT approach for hadronic molecules
that was employed in Refs. [9, 10] to systematically analyze the line shapes relevant for
the bottomonium-like states Zb(10610) and Zb(10650) and to extract their pole positions and
residues. The advantages of an EFT approach like this are as follows: it is consistent with
underlying chiral and heavy-quark symmetries, systematically improvable and allows for a
theoretical error estimate. In addition, relying on HQSS, the approach allows to predict in a
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Table 1. The pole positions ER and the residues g2 in various S -wave B(∗)B̄∗ channels for the most
advanced pionful fit [10]. The energy ER is given relative to the nearest open-bottom threshold quoted
in the second column. Uncertainties correspond to a 1σ deviation in the parameters allowed by the fit

to the data in the channels with JPC = 1+− where the Z(′)
b states reside. The theoretical uncertainty from

the truncation of the EFT expansion was estimated for these states to be about 1 MeV [10].

State Threshold Epole w.r.t. threshold [MeV] Residue at Epole

Zb BB̄∗ (−2.3 ± 0.5) − i(1.1 ± 0.1) (−1.2 ± 0.2) + i(0.3 ± 0.2)
Z′b B∗B̄∗ (1.8 ± 2.0) − i(13.6 ± 3.1) (1.5 ± 0.2) − i(0.6 ± 0.3)

parameter-free way the spin partners of the Zb with the quantum number J++, as demonstrated
in a recent work [10].
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