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Abstract. The questions on the existence of the three color quark symme-
try and three quark-lepton generations could have the origin associated with
the new exotic symmetries outside the Cartan-Killing-Lie algebras / groups.
Our long-term search for these symmetries has been began with our Calabi-Yau
space classification on the basis of the n-ary algebra for the reflexive projective
numbers and led us to the expansion of the binary n = 2 complex and hyper
complex numbers in the framework of the n-ary complex and hyper-complex
numbers with n = 3, 4, ... where we constructed new Abelian and non-Abelian
symmetries. We have studied then norm-division properties of the Abelian n-
ary complex numbers and have built the infinite chain of the Abelian groups
U (n−1) = [U(1) × . . . × U(1)](n−1). We have developed the n-ary holomorphic
(polymorphic) analysis on the n-ary complex space NC{n}, which led us to the
generalization of the quadratic Laplace equations for the harmonic functions.
The generalized Laplace equations for the n-ary harmonic functions give us
the n-th order homogeneous differential equations which are invariant with re-
spect to the Abelian n-ary groups U (n−1) and with some new spatial properties.
Further consideration of the non-Abelian n-ary hyper-complex numbers opens
the infinite series of the non-Abelian TnS U(n)-Lie groups(n=3,4,...) and its
corresponding tn su(n) algebras. One of the exceptional features of these sym-
metry groups is the appearance of some new n-dimensional spinors that could
lead to an extension of the concept of the S U(2)-spin, to the appearance of
n-dimensional quantum structures -exotic "n-spinor" matter(n = 3, 4, ... - maar-
crions). It is natural to assume that these new exotic "quantum spinor states"
could be candidates for the pra-matter of the quark-charge leptons or/and for
the dark matter. We will be also interested in the detection of the exotic quan-
tum ’n-spinor" matter in the neutrino and hadron experiments.

Geometrical basis of modern quantum physics of quarks and leptons - Standard Model -
can be represented as a space-time D = (3 + 1) - four-dimensional continuum. The symmetry
properties of this continuum are based on the space-time Lorentz-Poincaré symmetry group
P = S O(1, 3) n R4 and the corresponding quantum theory is constructed on the basis of the
groups of internal symmetries S U(3C)× S U(2)I ×U(1)Y . At present, one of the central theo-
retical questions for the Standard Model concerns its geometrization. By geometrization we
mean the existence of definite connections between the space-time geometry with the laws of
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motion in it, described by the global and local external symmetries, and the fundamental com-
ponents of the matter and radiation moving in this space-time geometry, with the quantum
properties and the interactions, described by the local and global internal symmetries. Such
quantum numbers for the quark-lepton matter as isotope-spin, color, the number of the quark-
lepton generations, described by the corresponding internal symmetries, could be understood
within the framework of geometrization of the Standard Model. In our understanding, the
geometrization of the SM could mean solving such an important problem as the relationship
between the internal and external symmetries which could relate the internal quantum prop-
erties of the matter with geometric features of the ambient space-time. In our opinion, the
questions of expanding the fundamentals of the quantum physics can arise on the way of the
proton-neutron and/or the electron quantization, on searching for the geometric beginning of
the 3-quark-color nature and the 3(3+1)-quark-lepton generations, unique properties of the
3-neutrinos and the unusual quantum nature of dark matter.

In the search for the new geometric varieties and related groups (both external and inter-
nal) symmetries and their representations in the framework of extensions of the well-studied
theory of the binary n = 2 complex and hyper-complex numbers to the theory of the n-ary
complex (Abelian) and hyper-complex (non-Abelian) numbers with n > 2. The geometri-
cal nature of the n-ary Abelian groups could be searched for in the theory of the Abelian
n − ary complex numbers. We have taken the idea of considering the n − ary complex num-
bers in the Euclidean Rn- spaces as a tool to find new symmetries in connection with the
Calabi-Yau space classification of any dimension CY(d), d = complex.dim. = 2p− real.dim.,
what we have done on the basis of the n − ary theory of the reflexive projective num-
bers [1, 2]. The CY(d)-spaces d = 2, 3, ... are the multi-dimensional generalizations of the
d = 1 one-dimensional torus. This classification allowed us to see new-n-ary structures in
Newtonian polyhedrons for the Calabi-Yau spaces CY(d) with the holonomy group S U(d),
d = 3, 4, 5, . . . .[1, 2] During the latest 20 year period we have related this development with
the search for the new algebraic structures and symmetries based on the theories of the norm-
division algebras for the n-ary complex and then to the hyper-complex numbers for n > 2:
firstly to the Abelian cyclic Cn-[3–7] and, then to the non-Abelian extensions of them[8].
The most intriguing results of this method are related to more complicated algebraic struc-
tures of the corresponding norm-division algebras. According to the Abelian Cn-cyclic group
the complexification of the Euclidean Rn spaces which followed by this method we have con-
sequently constructed the series – n = 3, 4, 5, 6, 12 of the n-dimensional (n − 1)-parameter
Abelian group-hypersurfaces with n = 2, 3, . . . We have determined the Abelian group sym-
metries for these spaces. The n-ary complex numbers have led to two isomorphic, n-ary
"unitary" and "orthogonal", Abelian (n-1)-parametric symmetry groups, which could be the
basis to describe the invisible light of the Universe [5, 10, 11]. The feature of our approach
is the appearance of noncompact Abelian symmetry groups. The theory of Abelian complex
numbers is based on the complexification of the Euclidean Rn-space[4, 5]:

z = x0q0 + x1q + ... + x(n−1)q(n−1), (1)

using Cn = q0, q, ..., q(n−1) : qn = ±q0, q0 − unit – cyclic groups of their n-one-dimensional
irreducible representations for conjugation operations:

q̃ = q{1} = jq, ˜̃q = q{2} = j2q, ..., q{n−1} = j(n−1)q; q{n} = q; j = e(2πi/n) (2)

which allow one to determine the norm ||z||n = z · z{1} · ... · z{n−1}, which has composite group
properties ||z1 ·z2||

n = ||z1||
n ·||z2||

n, which allows for n-ary complex numbers with a single norm
to determine (n-1)-parametric Abelian groups. Following the Abelian Cn-complexification
of Euclidean spaces Rn, we successively construct the series of Abelian (n-1)-parameter-
invariant hypersurfaces ||z||n = F0(x0, ..., x(n−1)) = 1 for n = 3, 4, 5, 6, ..., 12 (further expansion
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is obvious) we study the process, we derive Euler formulae as the basis to derive n-ary-
unitary Abelian groups in the (n × n) -matrix representation. For illustration we present the
expressions of algebraic equations for the hypersurfaces defined by the Cn, – cyclic unit
numbers only for n ≤ 6 for both cases, A) qn = q0, B) qn = −q0, respectively, (these cases
can be linked by extended Wick twist) [9]:

qn
n q̃n = e(2π i/n)q 〈zz1...zn−1〉 = Rn

n

i2 = −1 ī = −i x2
0 + x2

1 = R2

q2
2 = 1 q̃2 = −q2 x2

0 − x2
1 = H2

q3
3 = 1 q̃3 = e(2π i/3)q3 x3

0 + x3
1 + x3

2 − 3x0 x1 x2 = R3 = ρ · r2

q4
4 = 1 q̃4 = e(π i/2)q4 [(x0 − x2)2 + (x1 − x3)2] · [(x0 + x2)2 − (x1 + x3)2] = H2

1 · H
2
2

[x2
3 + x2

1 − 2x0 x2]2 − [x2
0 + x2

2 − 2x1 x3]2 = R4
1 − R4

2

q4
4 = −1 q̃4 = e(π i/2)q4 [x2

3 − x2
1 + 2x0 x2]2 + [x2

0 − x2
2 + 2x1 x3]2 = R4

1 + R4
2 = 1

q5
5 = 1 q̃5 = e(2π i/5)q5 x5

0 + x5
1 + x5

2 + x5
3 + x5

4 − 5x0 x1 x2 x3 x4−

−5{x3
0(x1 x4 + x2 x3) + x3

1(x0 x2 + x3 x4) + x3
2(x1 x3 + x0 x4)

+x3
3(x1 x3 + x0 x4) + x5

4(x0 x3 + x1 x2)}
+5{x0(x2

1 x2
4 + x2

2 x2
3) + x1(x2

0 x2
2 + x2

3 x2
4)

+x2(x2
1 x2

3 + x2
4 x2

0) + x3(x2
2 x2

4 + x2
0 x2

1) + x4(x2
3 x2

0 + x2
1 x2

2})

(3)

q6
6 = 1 q̃6 = e(π i/3)q6 [(x0 + x3)3 + (x1 + x4)3 + (x2 + x5)3 − 3(x0 + x3)(x1 + x4)(x2 + x5)]

·[(x0 − x3)3 + (x1 − x4)3 + (x2 − x5)3 − 3(x0 − x3)(x1 − x4)(x2 − x5)]
= [u3

0 + u3
1 + u3

2 − 3u0u1u2] · [v3
0 + v3

1 + v3
2 − 3v0v1v2]

= {F1}
3 · {F2}

3 = ρ1r2
1 · ρ2r2

2 = 1
{[(x3

0 + x3
2 + x3

4 − 3x0 x2 x4)]
−3[x0(x2

3 − x1 x5) + x2(x2
5 − x1 x3) + x4(x2

1 − x3 x5)]}2−
−{[(x3

1 + x3
3 + x3

5 − 3x1 x3 x5]
+3[x1(x2

4 − x0 x2) + x3(x2
0 − x2 x4) + x5(x2

2 − x0 x4)]}2

= {F3
1}

3 − {F3
2}

2 = 1

q6
6 = −1 q̃6 = e(π i/3)q6 {[(x3

0 + x3
2 − x3

4 + 3x0 x2 x4)]
−3[x0(x2

3 − x2 x4) + x2(x2
5 + x1 x3) − x4(x2

1 + x3 x5)]}2+
+{[x3

1 − x3
3 + x3

5 + 3x1 x3 x5]
−3[x1(x2

4 − x0 x2)) − x3(x2
0 + x2 x4) + x5(x2

2 + x0 x4)]}2

= {F̃3
1}

2 + {F̃3
2}

2 = 1

(4)

Generalization of the n-dimensional trigonometry and the Pythagorean theorems for n-
dimensional simplexes in each n-ary case has been obtained, for example, let see n = 3:

e(qα+q2β) = c0(α, β)q0 + s0(α, β)q + t0(α, β)q2, (5)

where c3
0 + s3

0 + t3
0 − 3c0s0t0 = 1. The two parameter Abelian ternary "unitarity" is:

U = e(αq+βq2), U+ = e( jαq+ j2β)q2
, U++ = e( j2αq+ jβ)q2) : U · U+ · U++ = 1̂, (6)

or in the matrix form:

U =

 a qb q2c
cq2 a qb
qb cq2 a

 , U+ =

 a jqb j2q2c
j2cq2 a jqb
jqb j2cq2 a

 , U++ =

 a j2qb jq2c
jcq2 a j2qb
j2qb jcq2 a

 (7)

U · U+ · U++ = detU = (a3 + b3 + c3 − 3abc) · 1̂ = 1̂. (8)
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Subsequent consideration in CN(n) – n-ary complexified Rn – Euclidean space the ways
of the holomorphizm (and polymorphizm) for the functions [3], [4]:

F(z, z{1}, ..., z{n−1}) = F0(x0, ..., x(n−1))q0 + F1(x0, ..., x(n−1))q + ... + F(n−1)(x0, ..., x(n−1)q{n−1} (9)

(z{p} − p = 1, 2, ..., (n − 1) is the number of the conjugation operations of the n-ary complex
number z) which allows us to derive n-dimensional wave equations (of the Laplace / Dirac
type) for the harmonic functions Fa(x0, ..., x(n−1)) and the corresponding n-spinors, invariant
relativity of the corresponding (n − 1) -parametric Abelian symmetry groups. The main
conclusion of our calculations is that the Abelian properties of the cyclic groups Cnlead to
the factorization of all the corresponding group (n−1) -dimensional hypersurfaces (n−1) with
the definition of the Abelian group U(n−1) , and by analyzing U(n−1) - the invariant Laplace
differential equations for arity-n harmonic functions Fi(x0, ..., x(n−1)), i = 0, ..., n − 1, where
the harmonic functions are determined through decomposition of the holomorphic function
[3, 8].

We have identified and investigated all the Abelian symmetries for the cases (n =

3, ..., 12), which could serve as opportunities to consider Abelian theories of invisible light of
the Universe, interacting with some invisible matter – exotic n-spinor "maarkrions". In this
view, we have naturally extended the constructions of Abelian n-ary complex numbers stud-
ied to the construction of the non-Abelian n-ary hyper-complex numbers starting from two
introducing hyper-complex numbers producing the (n2 − 1) (for tsu(3) – 8) generators [8]:

Z = x0Q0 + x1Q1 + ... + x(n2−1)Q(n2−1) : (Qk)n = ±Q0; k = 1, ..., n2 − 1. (10)

The Laplace differential equations can be found from the Cauchy-Riemann equations

∂F(z, z{1}, ..., z{n−1})
∂z{1}

= 0 ...,
∂F(z, z{1}, ..., z{n−1})

∂z{n−1} = 0 ... (11)

of the order deg=n. Following the Dirac procedure one can get from the differential equations
for n − ary harmonic functions the linear differential invariant equations for n − spinors:

F̂(∂x0, ..., ∂xn−1)ψ = 0, ψ =

 η0
....
ηn−1

 (12)

As an example we give the commutation relations for tsu(3)-algebra [8]:

[Q1,Q2] = ( j2 − j)Q6; [Q2,Q3] = ( j2 − j)Q4; [Q3,Q1] = ( j2 − j)Q5 (13)

[Q4,Q5] = ( j2 − j)Q3; [Q5,Q6] = ( j2 − j)Q1; [Q6,Q4] = ( j2 − j)Q2 (14)

[Q1,Q4] = 0; [Q2,Q4] = ( j2 − j)Q8; [Q3,Q4] = ( j − j2Q7 (15)
[Q1,Q5] = ( j − j2)Q7; [Q2,Q5] = 0; [Q3,Q5] = ( j2 − j)Q8 (16)
[Q1,Q6] = ( j2 − j)Q8; [Q2,Q6] = ( j − j2)Q7; [Q3,Q6] = 0 (17)

[Q1,Q7] = ( j − j2)Q3; [Q1,Q8] = ( j2 − j)Q2; [Q2,Q7] = ( j − j2)Q1 (18)
[Q2,Q8] = ( j2 − j)Q3; [Q3,Q7] = ( j − j2)Q2; [Q3,Q8] = ( j2 − j)Q1 (19)

[Q4,Q7] = ( j2 − j)Q5; [Q4,Q8] = ( j − j2)Q6; [Q5,Q7] = ( j2 − j)Q6; (20)
[Q5,Q8] = ( j − j2)Q4; [Q6,Q7] = ( j2 − j)Q4; [Q6,Q8] = ( j − j2)Q5 (21)
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The unit ternary-hypercomplex numbers produce the non-Abelian ternary-unitary
STU(3)-group Lee. Applying the unusual comutation rules we have constructed the hyper-
surface defined by the unit ternary:

z = (x0q0 + x7q + x8q2) + (x1q0 + x2q + x3q2)q1 + (x4q0 + x5q + x6q2)q2
1. (22)

The 8 imaginary units {Qk |q, q2, q1, qq1, q2q1, q2
1, qq2

1, q
2
1, q

2|Q3
k = q0}, produce tsu(3).

The ternary hypercomplex units |z · z̃ · ˜̃z| = 1 produce the ternary non-Abelian TS U(3) group
Lee, respectively. The corresponding TS U(3)-invariant hypersurface |z · z̃ · ˜̃z| = 1 takes the
following form [4, 8]:

F(x0, ..., x8) = |z0|
3 + |z1|

3 + |z2|
3 − (z0z̃1 ˜̃z2) − (z̃0 ˜̃z1z2) − (˜̃z0z̃1z2) = 1, (23)

where

z0 = x0q0 + x7q + x8q2, z1 = x1q0 + x2q + x3q2, z2 = x4q0 + x5q + x6q2, (24)

F(x0, ..., x8) = x3
0 + x3

7 + x3
8 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 + x3
6 − 3x0x7x8 − 3x1x2x3

− 3x0x7x8 − 3x0(x1x4 + x2x5 + x3x6)
− 3x7(x1x5 + x2x6 + x3x4) − 3x8(x1x6 + x2x4 + x3x5) = 1. (25)

The result of correctness was the vanishing of all contributions Vk in the decomposition:

V = F(x0, x1, ..., x8)Q0 + V1(x0, x1, ..., x8)Q1 + ... + V8(x0, x1, ..., x8)Q8, (26)

that is, out of the possible 729 terms, only 45 terms have remained non-zero! Thus, the con-
structed generators Qa; a = 1, ..., have more complicated than binary quaternions, the com-
mutation relations QaQb = jkQbQa; j = e2πi/3, where the value of k = 0, 1, 2 depends on the
choice of the generator subgroup (there are three {Q1,Q2,Q3},{Q4,Q5,Q6},{Q7,Q8}, and they
form the algebra tsu (3). The hypersurface itself is a group manifold defined by the ternary
group TS U(3). This group and its algebra are fundamentally different from the Cartan-Lie
group of S U(3) and its algebra su(3) defined by the 8 Gell-Mann generators, hand drawing).
The corresponding cubic hypersurface takes the following form in R8 [8]:

U =

 z0 qz1 q2z2
q2z̃2 z̃0 qz̃2
q˜̃z1 q2 ˜̃z2 ˜̃z0

 , DetU = F(x0, ..., x8). (27)

Understanding of the existence of a new vacuum of the Abelian symmetries of the invis-
ible light could help to find a generalization of the Lorentz group, that means, to go beyond
the usual geometry of the 4-dimensional space-time. The conclusion in modern physics is
that our quark-lepton matter forms our visible Universe, that is only a small part of a huge
hyper-Universe [6, 11]. Critical issues such as spin, charge, color, mass lead us to search for
the new symmetric geometric spaces, the basics of which we are looking for in the searching
for the new number theories, algebras, finite group symmetries and etc. If we are success-
ful on this way, we can understand the mechanism of formation of our visible Universe?!
Similarly, considering n = 4,5,6, ... ary hyper-complex numbers, one can construct n-ary
algebras and n-ary groups with the corresponding commutation relations, where j = e(2πi/n).
The important property of the ternary (n-ary) group TS U(3) in the matrix formalism is to
introduce new concepts of Complex conjugation, Transposition, Hermitian conjugation and
Unitarity: UU+U++ = 1. The next step was connected with the further study of ternary
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Clifford algebras in their relationship with binary Clifford algebras, which would allow one
to build n-spinors material matter with unusual quantum properties. As an illustration, the
first example of how the interpretation of the existing 3 neutrino states[10][11] may change
assuming that the space-time properties of 3 neutrinos are different from the properties of
charged quarks and charged leptons. So we can consider three neutrinos as a single field in
a space of dimension D = 6 (12), i.e. with two, three additional non-compact measurements,
and, in accordance with ternary complexity, the implementation (realization) of the neutrino
can be represented as a 3-spinor with the following three “charge conjugation” operations
(new neutrino light):

ψ =

 νe

ν̃µ
˜̃ντ

 , ψC =

 ντν̃e
˜̃νµ

 , ψCC =

 νµν̃τ˜̃νe

 , ψCCC = ψ (28)

describing a system of three neutrino states νe-neutrino, νµ- neutrino, ντ neutrino, which can
be represented as a particle-antiparticle-anti-particle (ternary model of 3 neutrino states, by
analogy with the 4-dimensional Dirac theory of the electron. The representation of three
neutrino states in the D = 6 assumes the existence of a new Abelian group U(1) associated
with the existence of a new light, possibly associated with dark energy.
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