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Abstract. We study the quantum and classical dynamics of spinning particles
in the framework of the general-relativistic covariant Dirac theory. The exact
Foldy-Wouthuysen transformation for the most general case of a fermion in ar-
bitrary configurations of the gravitational, inertial and electromagnetic fields is
derived. We demonstrate the complete consistency of the quantum and classical
dynamics. As physical applications, we discuss prospects of probing spacetime
structure and using spin effects for gravitational wave detection.

1 Introduction

Understanding the dynamics of particles with spin (electrons, protons, neutrons, neutrinos) in
arbitrary electromagnetic, gravitational and inertial fields is important for many high-energy
and astrophysical problems. Moreover, in the consistent gauge-theoretic approach [1], spin of
matter is coupled to the spacetime torsion, and hence by measuring spin effects one can probe
the spacetime geometry, detecting a possibly nontrivial post-Riemannian geometric structure.

2 Electromagnetism and gravity in gauge-theoretic approach

The gauge-theoretic formalism underlies the modern physics, and it is convenient to work
in this framework when discussing the dynamics of particles with microstructure (spin and
dipole moments) in external classical fields. Fermion matter is a source for the gauge fields
which act as mediators of physical interactions. Here we confine our attention only to electro-
magnetic and gravitational interactions. In the general Yang-Mills-Utiyama-Kibble approach
[1], electromagnetism is based on the 1-parameter U(1) symmetry group with the potential
1-form A = Aidxi as the corresponding gauge field, whereas gravity is based on the the 10-
parameter Poincaré symmetry group G =T4oS O(1, 3). The gravitational gauge potentials are
naturally identified with the coframe ϑα = eαi dxi (4 potentials for the translation subgroup
T4) and the local connection Γαβ = −Γβα = Γi

αβdxi (6 potentials for the Lorentz subgroup
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S O(1, 3)). For the multiplet of gauge potentials,
Ai

eαi
Γi
αβ

 , (1)

we have the corresponding multiplet of the electromagnetic and gravitational (“translational”
and “rotational”) gauge field strengths:

Fi j = ∂iA j − ∂ jAi

Ti j
α = ∂ieαj − ∂ jeαi + Γiβ

αeβj − Γ jβ
αeβi

Ri j
αβ = ∂iΓ j

αβ − ∂ jΓi
αβ + Γiγ

βΓ j
αγ − Γ jγ

βΓi
αγ

 . (2)

For the sake of generality, we assume that the Maxwell tensor Fi j, the spacetime torsion
tensor Ti j

α and the spacetime curvature tensor Ri j
αβ are all nontrivial.

The resulting Riemann-Cartan geometry reduces to the Riemannian spacetime when the
torsion vanishes Ti j

α = 0. In general, one can decompose the connection into the sum

Γiαβ = Γ̃iαβ − Kiαβ (3)

of the Riemannian connection (denoted by the tilde, it satisfies ∂ieαj −∂ jeαi +Γ̃iβ
αeβj − Γ̃ jβ

αeβi =

0), and the post-Riemannian contortion tensor which is determined by the torsion,

Kiαβ =
1
2

(
Tαβi − Tiαβ + Tiβα

)
. (4)

Let xi = (t, xa) be the local coordinates on the spacetime manifold. To study the dy-
namics of a spinning particle in an arbitrary external fields, one should choose a convenient
parametrization of the electromagnetic and gravitational variables. It is common to describe
Ai = (−Φ, A) in terms of the scalar and vector potentials, whereas the coframe eαi (gravita-
tional translational field) in the Schwinger gauge is parameterized as

e 0̂
i = V δ 0

i , êa
i = W â

b

(
δb

i − cKb δ 0
i

)
, a = 1, 2, 3. (5)

We assume that the functions Φ, A, V and K, as well as the components of the 3 × 3 matrix
W â

b may depend arbitrarily on t, xa.

3 Quantum and classical spin dynamics

In accordance with the equivalence principle (EP), which is a cornerstone of General Rel-
ativity theory, gravitational and inertial effects are locally coinciding for classical systems,
and motion of small bodies under the action of gravity does not depend on the mass. More
recently, the validity of EP for nonrelativistic quantum systems was demonstrated in the ex-
periments of Colella-Overhauser-Werner [2] and Bonse-Wroblewski [3], who measured the
phase shift of the wave function of a neutron affected by gravity and inertia, respectively. A
natural question arises whether EP can be extended to the relativistic quantum systems, which
requires the (comparative) analysis of the quantum and classical spin dynamics in external
gravitational and inertial fields [4–6].
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3.1 Dirac particle

We discuss the quantum spin in the framework of the relativistic Dirac theory. The dynamics
of a fermion particle with mass m and electric charge e is derived from the Lagrangian

L =
i~
2

(
ψγαDαψ − Dαψγ

αψ
)
− mcψψ +

1
2c

Mαβ ψσ
αβψ +

i~ν′

12
Ťα ψγαγ5ψ. (6)

The first two terms describe a spinor field with the minimal coupling to electromagnetism
and gravity which is encoded in the covariant spinor derivative

Dα = ei
α

(
∂i −

ie
~

Ai +
i
4

Γi
βγσβγ

)
. (7)

In addition, we assume possible nonminimal couplings which are described by the two Pauli-
type terms in (6), where Mαβ = µ′Fαβ + cδ′ 1

2 ηαβµνF
µν is the generalized polarization tensor,

and Ťα = − 1
2 η

αµνβTµνβ =
{
Ť 0, Ť

}
is the axial torsion. The parameters δ′, µ′, ν′ characterize

the magnitude of the corresponding nonminimal couplings.
The components M0̂â = cPa,Mâb̂ = εabcM

c are expressed in terms of the 3-vectors

M = µ′B + δ′E, P = cδ′B − µ′E/c, (8)

constructed from the anholonomic magnetic and electric fields which in the coframe (5) read

Ea =
1
V

Wb
â(E + cK × B)b, Ba =

1
det W

W â
b Bb, (9)

where E = −∇Φ − ∂A
∂t and B = ∇ × A.

Making use of the gravitational field parametrization (5), the Dirac equation derived from
(6) can be recast into the Schrödinger form i~ ∂ψ

∂t = Hψ with the Hermitian Hamiltonian

H = βmc2V + eΦ +
c
2

(
πb F

b
aα

a + αaF b
aπb

)
+

c
2

(K · π + π·K)

+
~c
4

(Ξ·Σ − Υγ5) − βV (Σ ·M + iα ·P) . (10)

Here: α = βγ; Σ are the spin matrices; π = −i~∇ − eA is the kinetic momentum operator,
and the gravitational (both, GR and post-Riemannian) effects are encoded in

F b
a = VWb

â, Υ = Vε â̂b̂cΓ̃â̂b̂c +
Vc(3 − ν′)

3
Ť 0, Ξa =

V
c
ε â̂b̂cΓ̃0̂̂b̂c −

V(3 − ν′)
3

Ťa. (11)

To reveal the physical contents of the theory, we use the method developed in Refs. [7–
9] to construct the unitary transformation from the Schrödinger picture (10) to the Foldy-
Wouthuysen (FW) representation. The resulting FW Hamiltonian reads:

HFW = βε′ + eΦ +
c
2

(K · π + π · K) +
~

2
Π ·Ω(1) +

~

2
Σ ·Ω(2). (12)

Here Π = βΣ is the polarization operator, and we introduced the 3-vector operators

Ωa
(1) =

mc4

2

{
1
T
, {πe, ε

abcF e
bF

d
c∂d V}

}
+

c2

8

{
1
ε′
, {πe, (2εabcF d

b∂dF
e

c

+ δabF e
b Υ)}

}
+

ec2

4
εabc

{
1
T
,
(
{F d

b, πd}V2
Ec − V2

Eb{F
d

c, πd}
)}

−
c

4~
εabc

{ 1
ε′
,
(
{F d

b, πd}VPc − VPb{F
d

c, πd}
)}
, (13)
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Ωa
(2) =

c2

8

{
1
T
,
{
{πe,F

e
b},

{
π f ,

[
εabc(

1
c
Ḟ f

c − F
d

c∂dK f + Kd∂dF
f
c)

−
1
2
F f

d

(
δdbΞa − δdaΞb

)]}}}
+

c
2

Ξa −
ec2

2

{
1
ε′
,V2
B

a
}

−
2V
~
Ma +

c2

2~

{ 1
T
,
{
{δabF d

bF
e

cVMc, πd}, πe
}}
, (14)

where the curly brackets { , } denote anticommutators, and

ε′ =

√
m2c4V2 +

c2

4
δac{πb,F b

a}{πd,F d
c}, T = 2ε′2 + {ε′,mc2V}. (15)

It is important to emphasize that is an exact result in all terms which are of the zero and the
first orders in the Planck constant ~, and we did not make any assumptions about the weakness
of the external fields. In other words, our findings are applicable to any configurations of
external fields which can be arbitrarily strong. Although the final formulas look similar to
those derived earlier in [10], one should notice that now (11) include the contributions from
the nontrivial torsion field.

3.2 Classical particle with spin

Classical theory of spin was developed quite early after the concept of spin was introduced
for elementary particles [11–15]. This theory underlies the analysis of dynamics of polarized
particles in accelerators and storage rings.

The motion of a test particle is described by its 4-velocity uα and by the 4-vector of spin
S α which satisfy the normalization, uαuα = c2, and the orthogonality, S αuα = 0, conditions.
By neglecting the second order spin effects [16, 17], the dynamical equations for the spinning
particle in external electromagnetic and gravitational fields read

Duα

dτ
= −

e
m

Fα
β uβ, (16)

DS α

dτ
= − (ν′− 2) uiKiβ

αS β −
e
m

Fα
βS β −

2
~

[
Mα

β +
uγ

c2

(
uαMβγ − uβMα

γ

)]
S β. (17)

The laboratory-frame components of the vector S α do not describe the physical spin of a
particle: We have to recall that spin, as the “internal angular momentum” of a particle, is
determined with respect to the rest reference frame.

We denote the physical spin by s. Using the general scheme developed in [10, 18, 19],
we reduce the system (16)-(17) to

ds
dτ

= Ω × s. (18)

Notice that uα = {γ, γu} with the Lorentz factor γ. We find the precession angular velocity

Ω =
e
m

(
−Beff +

γ

γ + 1
u × Eeff

c2

)
(19)

as a function of the external fields which enter via the effective fields:

Eeff = E −
2m
e~

γ2 u × ∆ +
m
e
E, (20)

Beff = B +
2m
e~

γ2
[
∆ −

1
c2 u (u · ∆)

]
+

m
e
B. (21)
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Here the polarization current combines the effects of nonminimal couplings

∆ =M +
1
c
u ×P, (22)

whereas the gravitoelectric and gravitomagnetic fields

E = Ẽ −
γc(3 − ν′)

6
u × Ť, B = B̃ +

γc(3 − ν′)
6

(
Ť − uŤ 0

)
(23)

encompass GR terms Ẽ, B̃ and the torsion contributions.

3.3 Consistency of quantum and classical spin dynamics

The quantum spin dynamics is determined from the commutator of the polarization operator
Π = βΣ with the FW Hamiltonian (12):

dΠ
dt

=
i
~

[HFW ,Π] = Ω(1) × Σ +Ω(2) ×Π. (24)

To derive the corresponding semiclassical expressions from the quantum results, we should
evaluate all anticommutators and neglecting the powers of ~ higher than 1 in (13)-(15). Then
(24) reduces to (18), and we can verify that Ω = Ω(1) +Ω(2) is exactly equal to (19) after we
notice the identifications [10]

β
c2

ε′
F b

aπb = va,
ε′

ε′ + mc2V
=

γ

1 + γ
,

c3

ε′(ε′ + mc2V)
F b

aπbF
d

cπd =
γ

1 + γ

vavc

c
. (25)

This general result is of fundamental importance for the comparison of the dynamics of a
quantum and classical spinning particle in external fields for the proof of the validity of the
equivalence principle, extended to relativistic quantum systems.

4 Physical effects: probing spacetime structure

Making use of the theoretical framework outlined here, one can establish observational
bounds on spin-torsion coupling from the dynamics of freely precessing nuclear spins in a
uniform magnetic field B. From the data [20] of the experiment with 199Hg and 201Hg atoms
devoted to the search of a hypothetical scalar-pseudoscalar interactions, we derive [18] the
strong restriction on the absolute value of the spacetime torsion:

~c
4
| Ť| · | cos Θ| < 2.2 × 10−21 eV, |Ť| · | cos Θ| < 4.3 × 10−14 m−1. (26)

Here Θ is the angle between B and the torsion Ť. One can further improve these bounds by
approximately one order by making use of the more recent experimental data [21].

As another application, one could develop a novel technique to probe gravitational waves
by observing the spin dynamics in a magnetic resonance setup [10]. In the local coordinates
(t, x, y, z), the spacetime geometry of a weak gravitational wave is given by

V = 1, K = 0, W â
b =


1 + w⊕ w⊗ 0
w⊗ 1 − w⊕ 0

0 0 1

 . (27)
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The two independent polarizations of a wave with the frequency ω propagating along the
z axis are described by the functions w⊗ = w⊗(ϕ) and w⊕ = w⊕(ϕ) of the phase ϕ =

ω(t − z/c). Suppose w⊕ = 0 and w⊗ = g0 cosϕ, and we apply a constant homogeneous
magnetic field in the plane of the wave front: B = (B0, 0, 0), with B0 = const. Then from
(9) we find the field acting on the spin: B = (B0, B0w

⊗, 0). Thereby, the resulting field
configuration reproduces the magnetic resonance conditions, when the spin is affected by the
constant homogeneous magnetic field along x superimposed with an additional alternating
field in the perpendicular plane (y, z). Computing the probability of the spin-flip we find
that the effect is quadratic in the wave amplitude g0. However, one can expect that also the
polarization effects which are linear in g0 can possibly show up in the analysis of the spin
components orthogonal to initial spin polarization.

5 Conclusion

Our results on the quantum and quasiclassical equations of motion of spinning particles are
of direct operational relevance and they form the basis for many experiments in high-energy
physics and astrophysics. Important applications range from the study of polarized beams
in accelerators and storage rings to the development of novel methods of gravitational wave
detection.

The experimental study of the action of a gravitational wave on spin might provide a
useful supplementary technical tool for the existing modern experiments (LIGO/VIRGO). In
particular, one could search for a very weak (possibly amplified by means of an applied mag-
netic field) effect of the gravitational wave on spin in coincidence with the standard signal.
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