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(GPT) used for power distributionncertainty[2]. These S/U techniques show different
weaknesses in uncertainty quantification studiésr instance, one can point otlte
following drawbacks1) a low efficiency for alarge number of response functidoecause
the number of adjoint functions increases linearly with the number of resp@)dbse
applicability is only for small uncertainties because it is based on a lagamoachand
large uncertainties may exceed tiaage of linearity of the modehnd3) it showssevere
limitations as consequence of the Hioearity of multiphysics (neutronics,
thermohydraulic, depletion, ...) in reactor calculations.

The MC approach overcomes those limitations, du to its stochastic nature it carries
an inherent statistical uncertainfjo reduce the statistical uncertainty a langenberof
samples is often required, which implies a larger computational Timecanbe seen as a
significant disadvantage compared to first order approximation technidW@sapproach
can also be classified by their nuclear data uncertainty Snihws “Total Monte Carlo”
(TMC)[3] relies on model parameter covariances; NUDUAand RANDY [5] take as
input the information provided by nuclear data evaluationsmultigroup covariance
applying them to continuous energy dabtdSUSA6] takes the form ofmultigroup
covariance matricegpplying only for multigroup data

For the MC approach, the nuclear data are sampled at the beginning of the simulation,
then the reactor core simulator that solves couphedti-physicsat different levels of
approximation is executedn this work we took advantage ofthe SEANAP systent7]
developedfor and appliedo 3-D PWR core analysisAlready in the past SEANARas
demonstrated a very good agreement with the broad sets of parameters and cycles analysed
at the Spanish PWR unif8]. One of the major advantages of usBBANAP is itsvery
low CPU time requirement as compared to other codes. A full core agddranching
lattice calculationgan be performed in only few minutes.

For this work, SANDY provides full ML sampling of the nuclear data files for transport
and depletion calculations. Each nuclear data random file is used to perform a separate core
calculation.With SANDY we samples reaction cross sections, fission neutron multiplicities
and prompt fission néton energy distributions using the evaluated nuclear data and
covariances from JEFB.3. Then, the random files were processed with NJOY in WIMS
format, which serve as input for the SEANAP codde statistics of all SEANAP
simulations finally yields thalesired uncertainty quantificatiomn this work, sampling
simulations for?®U, 23U and?**Puare carried ouseparatelyTable 1 show4JQ analysis
for thecritical boron concentratiotin a 3loop PWR Westinghouse uratong the burnup
The total uncertaintpf boron concentratiors around~65 ppm. he maincontributor to
this uncertaintyis 2°U-nubar the contribution due t&*%U crosssection is constant during
the cycle. For thé*Pu, its contribution is larger thd#U at endof-cycle.

3 Bayesian Monte Carlo technique

In this section, we reviewhe current nuclear data adjustment methodologies based on the
Bayesian approach togethgith MC technique. Hereafterexperimental data is referred to
integral information, such as criticality integral benchmarks (e«gafd spectral indices)
shielding/transmission benchmarks (e.g. neutron leakage)lt is well-recognizedthat
integral benchmarks should be avoided for the adjustment of gepenabse libraries
because this can lead to potential compensating effEotsse compensating errors can be
due toboth the impact of other isotop&s the benchmark andrrorsin the calculation
attributedto complicated multphysics.

However, it isalso recognizedhat such integral dataay beused to perform tune or
fine adjustment of specific nuclear data to improve the overall performance of an entire
generalpurpose libraryThus, “tuned” nuclear data adjustments should rely on Higelity
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Table 1. UQ assessmeifior critical boron concemation inaPWR Westinghouse uniSEANAP
system is used to perform calculatioBslculationperformed witha total of 200 random files
generated by SANDY todB00 samples for each casieasured and Calculated values stiewn.

B B Uncertainties in ppm (Boron Concentration)
Power Burnup 1\/;):;: Co;;;n due to JEFF-3.3 covariance data

(%) (GWd/tHM) ( mi ( m.) Pu9 Pu9 Pu9 | U5 Us Us U8

PP PP XS | Nubar | chi | XS | Nubar | chi | XS
75 0.031 1113 1085 18 15 9 27 46 10 24
100 0.134 985 1011 19 15 9 27 46 10 25
100 1.340 870 896 22 16 9 25 47 10 24
100 3.591 688 701 27 19 9 24 43 10 24
100 5.549 504 526 30 21 9 22 40 10 24
100 7.716 319 321 34 23 9 21 38 10 23
100 8.823 227 219 35 24 9 21 37 10 23
100 10.284 101 79 37 25 9 20 35 10 23
100 11.351 4 -29 39 26 9 20 34 10 23

experiments that can be used as simple (e.g. a single isotopeyndetstood and so
called clean benchmarks. In this sense, one should avoid adjustments that include error
sources unrelated to nuclear data into the evaluation procé&hnmsequentlyreactor core
measurements (such as the experimental data presented in Table 1) can be ued only
derive specifiadjustments fonuclear data librariefor reactorapplications.

Two distinct methods of nuclear data adjustment methodologies can be ieatftio
deterministic and stochastic methods.

3.1 Generalized Linear Least Squares (GLLS)
TheGLLS is a deterministic methodonsistingon minimization Eq. 1

[E — C(@]" Vi [E — C(@)] + [0 — ap]"V; o — ap] = x*(0) @)

The GLLS is based oseveral assumption®)][ 1) experimental and nuclear data are
normally distributed, 2)inear approximations betweetl observablesand 3)model and
experimental data are uncorrelatétus, GLLS can be seen aBayesian approach in the
sense that experimental data are used tosagjior values. Although probability density
functions are not considered explicitly, the GLLS is used to d#nposterior measmand
covariance ofnuclear data.

3.2 Monte Carlo nuclear data adjustment methodologies

MC nuclear data adjustment methodologies have been developed to avoid the need to
linearize norlinear models, and to handle maslelhich are not necessarily normally
distributed P], (e.g. model parameters (x) which lead through a model transformation
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o=M(x)). These methodologies are able to include integral data, reducing uncertainties

while performing better posterior nuclear dathe Bayesian MC techniques are based on a
direct application of Bayes’ Theorem, Eq.2

p(c|E) x py(aloc, Ve) X L(Yg, Vi|o) @)

The prior probability p(cloc,Vc) and likelihood L(y,Ve|o) are independent probability
density functions.The principle of maximum entropy will ensure thai{goc,Vc) and
L(ye, Ve|o) are known and can be approximated by multivariate normal distributiolns
case the normalitgssumption is not acceptable, ¢ may be mapped onto an approximately
normally distributed vector by an invertible transforma{idh

Under these conditions thBayes’ Theorem vyields a multivariate normal posterior
probability density function This Bayesian approach can be defined as Multivariate
Normal Bayesian Model (MNBMpnd theresulting equations are widely known as the
MOCABA equations4,10]. A stochatic methodology can be used to randomly sample the
“a priori” nuclear data. There are codes such SANDY and NUDUNA able to provide
samples of nuclear datdhey workon normal (or lognormal) distributions because no
further information on theistribution of the nuclear data are provided in evaluated fites.
this work, SANDY code is used assuming normal distribusiofhe sampling can be also
performed at the level of nuclear parameters in nuclear reaction sodesas TALYS
[11,12]. In this case, it is unlikely thatof|oc,Vc) will be normal, resulting in doss of
information about the prior functioniifis approximated just by a normal distribution.

3.3 Bayesian Monte Carlo approach

The requirement of a weknown prior and likelihood probability density function is a
serious limitation of thg@revious approacti non-informative prior distributions are known
[9,11]. To overcome this limitation the Bayesian Monte Carlo (BMC) approach
[9,11,1213)] takes advantage of TMC method to generate “a priori” random files which are
not explicitly normal. The BMC technique will incorporate this integral “a priori”
information through likelihood factors that are definedEq. 3

L(Yg, VE|a>~e-X"/ 2,with y2 = [E — C(ap)]" Vi L [E — C(o)] (3)

Based on this definition, one can calculatéweight” for any k-sample set, as followig
Eq.4, which normality assumption is implicitly given by-cguared

2
Wy = e‘Xk 2 )

These weights are used to calculate “a posteriori” moments (see Eq.5)

N INT I
ol = YN 0kX0ik. oy Lk=1 WkX(0ik=0) (0 k=0])
| = N N
Yizg Wk Yg=1 Wk

®)

1 v Y0 -
One canwork with different definitions of weights. Simpler definitions of wx values can
lead to very small weights. To overcome this limitation different renormalizddnctions
havebeenintroduced For instance,hte BackwardForward MC method (BFMC)12,13]
proposed aenormalizationfunction to avoid such largdispersion of weightsRecently,
other methodshave been developesith BMC to compensat for the model deficiencies
and inconsistent datfl4,15]
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3.4 Selection of integral Benchmarks

The selection of dedicated integral experiments detesttieescope of the nuclear data
adjustment. Nuclear data evaluations have used mainly criticality benchmarks to match C/E
values(e.g.ker and spectral idices) However, the & value is a global parameter that can
be achievedhrough many possible combinations of nuclear data. It can lead to inherent
compensating effects ithe adjustment work 12,13]. In recent works, other sources of
integral data are pointed out to extend the application angrédiction capabilitieof
future evaluations. Apart of the wdhown spectral index measurements, one can
considerer other measurements such as delsgedon fraction and shielding/transmission
leakage neutron spectrdg]

As an example oBMC adjustmenttwo different integral benchmarks have been
selected to see the impact $PU adjustment between 50KeV and 10 MeV For
criticality, the Godiva (HMF1) benchmark for shielding,the LLNL -pulsed sphered for
23%U. A comparison of sensitivity profiles is fermed to assess ttimportanceof those
benchmarks.Fig. 1 showsthe experimental values for neutron leakage andheir
sensitivitesto the continuurrinelasticscattering MT91) crosssection of?3°U, sensitivities
are calculated with MCSENé&ode [L7]. For this aalysis,MT91 is choserbecauset is the
maininelasticchannebetween 20 10 MeV.

LLNL pulsed sphere; UCRL-ID-1311461
235U, 0.7 mfp, fwhm=2.0 ns, NE213-B bias=1.6, FP=945.54 cm, 26-deg

1.0E-03 1.E+03
E=1.85 E=2.35 E=2.48 E=3 E=43 E=48 E=6.43
7.56-04 F-- 1E+02
E=8.19 E=10 E=12.8 E=13.8 E=14.6 E=15.7 -O-Exp
5.0E-04 === === LE+01 @
- ~
o0 -
E 25E04 f-—mmmmmm o 1E+00 5
2 3
$ 4
Z 0.0E+00 P
2 £
2 2
"
-2.5€-04
£ 2560 g
L] S
-5.0E-04 o

350
Time (ns)

Fig. 1. Sensitivity coefficient for thé*U continuum inelastic cross section (MT91) in the
LLNL/235U pulsed sphere. Sensitivity calculation performed with MCSEdde

Fig.2 showsthe results othe BMC technique for®®U adjustmentThe 2%U random
files are obtained fronTENDL-2014 a total number of 5000 samplegre used in this
work. This number seems enough to reach an adequate conveirg&M€E [18].The high
sensitivity ofthefission cross section in Godiva shows an increase in fission around +1.4%
if only Godiva is used inthe adjustment. LLNipulsed sphere goes in the opposite
direction, with-1.0%. However, the highensitivity in MT91 for the pulsed sphagizesan
increasaup to+2.5%.These changes are dominant in the case of a jointly adjustment.

BMC techniquealso predicts‘a posteriori” covariances. The Godiva experiment leads
to a strong reduction dhe uncertainty in fission crossection of around 1.5%he LLNL -
pulsed sphere dnchanges the inelastic uncertainty with a reduction of the uncertainty in
0.6%. In additionthe Godiva experiment leads a crosscorrelation between fission and
nubar as a consequence of the criticality constraint (see-ight3. However,no cross
correlation is seen for the LLNpulsed sphere (see Fig.3 left).
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Fig. 2. Results for BMC adjustment, fission (left) atudal inelastic (right)crosssections The figures
show thepredictedposteriorvalues usingxpermentaladjustments witlGodiva HMF1), LLNL -
pulsed sphere dyothbenchmarks togethelivided byprior crosssections
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Fig. 3. Posteriori correlation matriysing LLNL-?3U pulsed spherféieft) and Godivéright).

In Table 2 prior and posterior resulfer ket in criticality, andchi-squared in shielding case
are shown. It can be concludixhta joint constrainis importantto get a better and reliable
adjustment of nuclear datgmdfor avoiding compensation effects

Table 2. Results of BMC adjustment for Godiva and LLNL/2BBulsed sphere Benchmarks
Calculations are performed with MCMN?1. The ke statisticaluncertainty < 10pcm.

HMF1/Godiva LLNL/235U -0.7mfp
pulsed sphere

. Akt (10) due to )

Margin kerr (mean) nuclear data unc. Total y
Prior 0.99504 0.01119 3.52
A posteriori...only HMF1 0.99992 0.00100 3.69
A posteriori...only LLNL-%3%U 0.99146 0.01069 3.13
A posteriori ..BothHMF1 & LLNL -23%U 0.99985 0.00099 3.37
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4 Conclusion

Two differentexamples have been used to demonstrate the importance of Monte Carlo
techniques in the procedure of evaluation of nuclear &atd, reactor coreneasurements
have been used to perform HQ assessment whiaan help to assess nuclear data trends
and determinghe main contributors and uncertainty targets tfoe evaluation procedure.

The secongtxamplehas shown the importance of selection of bematks n the Bayesian
approachavoidng as much as possible compensations in the “a posteriori” evaluated data.
Benchmarks should beelectedfocusing onan individual isotope, energy rangeeaction

type and different constraint
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