


(GPT) used for power distribution uncertainty [2]. These S/U techniques show different 
weaknesses in uncertainty quantification studies. For instance, one can point out the 
following drawbacks: 1) a low efficiency for a large number of response functions because 
the number of adjoint functions increases linearly with the number of responses, 2) the 
applicability is only for small uncertainties because it is based on a linear-approach and 
large uncertainties may exceed the range of linearity of the model, and 3) it shows severe 
limitations as consequence of the non-linearity of multi-physics (neutronics, 
thermohydraulic, depletion, …) in reactor calculations. 

The MC approach overcomes those limitations, but due to its stochastic nature it carries 
an inherent statistical uncertainty. To reduce the statistical uncertainty a large number of 
samples is often required, which implies a larger computational time. This can be seen as a 
significant disadvantage compared to first order approximation techniques. MC approach 
can also be classified by their nuclear data uncertainty inputs, thus “Total Monte Carlo” 

(TMC)[3] relies on model parameter covariances; NUDUNA[4] and SANDY[5] take as 
input the information provided by nuclear data evaluations or multigroup covariance 
applying them to continuous energy data, XSUSA[6] takes the form of multigroup 
covariance matrices applying only for multigroup data. 

For the MC approach, the nuclear data are sampled at the beginning of the simulation, 
then the reactor core simulator that solves coupled multi-physics at different levels of 
approximation is executed. In this work, we took advantage of the SEANAP system [7] 
developed for and applied to 3-D PWR core analysis. Already in the past SEANAP has 
demonstrated a very good agreement with the broad sets of parameters and cycles analysed 
at the Spanish PWR units [8]. One of the major advantages of using SEANAP is its very 
low CPU time requirement as compared to other codes. A full core cycle and branching 
lattice calculations can be performed in only few minutes.  

For this work, SANDY provides full MC sampling of the nuclear data files for transport 
and depletion calculations. Each nuclear data random file is used to perform a separate core 
calculation. With SANDY we samples reaction cross sections, fission neutron multiplicities 
and prompt fission neutron energy distributions using the evaluated nuclear data and 
covariances from JEFF-3.3. Then, the random files were processed with NJOY in WIMS 
format, which serve as input for the SEANAP code. The statistics of all SEANAP 
simulations finally yields the desired uncertainty quantification. In this work, sampling 
simulations for 235U, 238U and 239Pu are carried out separately. Table 1 shows UQ analysis 
for the critical boron concentration in a 3-loop PWR Westinghouse unit along the burnup. 
The total uncertainty of boron concentration is around ~65 ppm. The main contributor to 
this uncertainty is 235U-nubar, the contribution due to 238U cross-section is constant during 
the cycle. For the 239Pu, its contribution is larger than 235U at end-of-cycle.  

3 Bayesian Monte Carlo technique   

In this section, we review the current nuclear data adjustment methodologies based on the 
Bayesian approach together with MC techniques. Hereafter, experimental data is referred to 
integral information, such as criticality integral benchmarks (e.g. keff and spectral indices) 
shielding/transmission benchmarks (e.g. neutron leakage), etc. It is well-recognized that 
integral benchmarks should be avoided for the adjustment of general-purpose libraries 
because this can lead to potential compensating effects. These compensating errors can be 
due to both the impact of other isotopes in the benchmark and errors in the calculation 
attributed to complicated multi-physics. 

However, it is also recognized that such integral data may be used to perform tune or 
fine adjustment of specific nuclear data to improve the overall performance of an entire 
general-purpose library. Thus, “tuned” nuclear data adjustments should rely on high-fidelity  
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Table 1. UQ assessment for critical boron concentration in a PWR Westinghouse unit. SEANAP 
system is used to perform calculations. Calculation performed with a total of 2100 random files 

generated by SANDY tool (300 samples for each case). Measured and Calculated values are shown.  

Power 

(%) 

Burnup 

(GWd/tHM) 

Boron 

Meas. 

(ppm) 

Boron 

Calc. 

(ppm) 

Uncertainties in ppm (Boron Concentration) 

due to JEFF-3.3 covariance data 

Pu9 

XS 

Pu9 

Nubar 

Pu9 

chi 

U5 

XS 

U5 

Nubar 

U5 

chi 

U8 

XS 

75 0.031 1113 1085 18 15 9 27 46 10 24 

100 0.134 985 1011 19 15 9 27 46 10 25 

100 1.340 870 896 22 16 9 25 47 10 24 

100 3.591 688 701 27 19 9 24 43 10 24 

100 5.549 504 526 30 21 9 22 40 10 24 

100 7.716 319 321 34 23 9 21 38 10 23 

100 8.823 227 219 35 24 9 21 37 10 23 

100 10.284 101 79 37 25 9 20 35 10 23 

100 11.351 4 -29 39 26 9 20 34 10 23 

 
experiments that can be used as simple (e.g. a single isotope), well-understood and so-
called clean benchmarks. In this sense, one should avoid adjustments that include error 
sources unrelated to nuclear data into the evaluation procedure. Consequently, reactor core 
measurements (such as the experimental data presented in Table 1) can be used only to 
derive specific adjustments for nuclear data libraries for reactor applications. 

Two distinct methods of nuclear data adjustment methodologies can be categorized into 
deterministic and stochastic methods. 

3.1 Generalized Linear Least Squares (GLLS)   

The GLLS is a deterministic method consisting on minimization, Eq. 1:  

 (1) 

The GLLS is based on several assumptions [9]: 1) experimental and nuclear data are 
normally distributed, 2) linear approximations between all observables, and 3) model and 
experimental data are uncorrelated. Thus, GLLS can be seen as a Bayesian approach in the 
sense that experimental data are used to adjust prior values. Although probability density 
functions are not considered explicitly, the GLLS is used to derive the posterior means and 
covariances of nuclear data. 

3.2 Monte Carlo nuclear data adjustment methodologies   

MC nuclear data adjustment methodologies have been developed to avoid the need to 
linearize non-linear models, and to handle models which are not necessarily normally 
distributed [9], (e.g. model parameters (x) which lead through a model transformation 

 𝐸 − 𝐶 𝜎  𝑇𝑉𝐸
−1 𝐸 − 𝐶 𝜎  +  𝜎 − 𝜎0 

𝑇𝑉𝜎
−1 𝜎 − 𝜎0 = 𝜒2(𝜎) 
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=M(x)). These methodologies are able to include integral data, reducing uncertainties 
while performing better posterior nuclear data. The Bayesian MC techniques are based on a 
direct application of Bayes’ Theorem, Eq.2: 

 (2) 

The prior probability p0(σ|σC,VC) and likelihood L(yE,VE|σ) are independent probability 

density functions. The principle of maximum entropy will ensure that p0(σ|σC,VC) and 
L(yE,VE|σ) are known and can be approximated by multivariate normal distributions. In 
case the normality assumption is not acceptable, σ may be mapped onto an approximately 

normally distributed vector by an invertible transformation [4].  
Under these conditions the Bayes’ Theorem yields a multivariate normal posterior 

probability density function. This Bayesian approach can be defined as Multivariate 
Normal Bayesian Model (MNBM) and the resulting equations are widely known as the 
MOCABA equations [4,10]. A stochastic methodology can be used to randomly sample the 
“a priori” nuclear data. There are codes such as SANDY and NUDUNA able to provide 
samples of nuclear data. They work on normal (or log-normal) distributions because no 
further information on the distribution of the nuclear data are provided in evaluated files. In 
this work, SANDY code is used assuming normal distributions. The sampling can be also 
performed at the level of nuclear parameters in nuclear reaction codes such as TALYS 

[11,12]. In this case, it is unlikely that p0(σ|σC,VC) will be normal, resulting in a loss of 
information about the prior function if it is approximated just by a normal distribution. 

3.3 Bayesian Monte Carlo approach   

The requirement of a well-known prior and likelihood probability density function is a 
serious limitation of the previous approach if non-informative prior distributions are known 
[9,11]. To overcome this limitation the Bayesian Monte Carlo (BMC) approach 
[9,11,12,13] takes advantage of TMC method to generate “a priori” random files which are 

not explicitly normal. The BMC technique will incorporate this integral “a priori” 

information through likelihood factors that are defined in Eq. 3: 

𝐿 𝑦𝐸 , 𝑉𝐸|𝜎 ~𝑒−
𝜒𝑘

2

2
⁄

, with 𝜒𝑘
2 =  𝐸 − 𝐶 𝜎𝑘  

𝑇𝑉𝐸
−1 𝐸 − 𝐶 𝜎𝑘   

(3) 

 
Based on this definition, one can calculate a “weight” for any k-sample set, as follows in 
Eq.4, which normality assumption is implicitly given by chi-squared: 

𝜔𝑘 = 𝑒−
𝜒𝑘

2

2
⁄

 (4) 

These weights are used to calculate “a posteriori” moments (see Eq.5). 

𝜎𝑖
′ =

∑ 𝜔𝑘
𝑁
𝑘=1 ×𝜎𝑖,𝑘

∑ 𝜔𝑘
𝑁
𝑖=𝑘

; 𝑉𝜎𝑖𝑗
′ =

∑ 𝜔𝑘
𝑁
𝑘=1 × 𝜎𝑖,𝑘−𝜎𝑖

′ 𝑇 𝜎𝑗,𝑘−𝜎𝑗
′ 

∑ 𝜔𝑘
𝑁
𝑘=1

 (5) 

One can work with different definitions of weights. Simpler definitions of ωk values can 
lead to very small weights. To overcome this limitation different renormalized k-functions 
have been introduced. For instance, the Backward-Forward MC method (BFMC) [12,13] 
proposed a renormalization function to avoid such large dispersion of weights. Recently, 
other methods have been developed with BMC to compensate for the model deficiencies 
and inconsistent data. [14,15] 

𝑝 𝜎|𝐸 ∝ 𝑝0 𝜎|𝜎𝐶 ,𝑉𝐶 × 𝐿(𝑦𝐸 ,𝑉𝐸|𝜎) 
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3.4 Selection of integral Benchmarks   

The selection of dedicated integral experiments determines the scope of the nuclear data 
adjustment. Nuclear data evaluations have used mainly criticality benchmarks to match C/E 
values (e.g. keff and spectral indices). However, the keff value is a global parameter that can 
be achieved through many possible combinations of nuclear data. It can lead to inherent 
compensating effects in the adjustment work [12,13]. In recent works, other sources of 
integral data are pointed out to extend the application and the prediction capabilities of 
future evaluations. Apart of the well-known spectral index measurements, one can 
considerer other measurements such as delayed neutron fraction and shielding/transmission 
leakage neutron spectra. [16]  

As an example of BMC adjustment, two different integral benchmarks have been 
selected to see the impact of 235U adjustment between 500 keV and 10 MeV:  For 
criticality, the Godiva (HMF1) benchmark; for shielding, the LLNL -pulsed sphered for 
235U. A comparison of sensitivity profiles is performed to assess the importance of those 
benchmarks. Fig. 1 shows the experimental values for neutron leakage and their 
sensitivities to the continuum-inelastic scattering (MT91) cross-section of 235U, sensitivities 
are calculated with MCSEN5 code [17]. For this analysis, MT91 is chosen because it is the 
main inelastic channel between 2 to 10 MeV. 

 

Fig. 1. Sensitivity coefficient for the 235U continuum inelastic cross section (MT91) in the 
LLNL/235U pulsed sphere. Sensitivity calculation performed with MCSEN5 code. 

Fig.2 shows the results of the BMC technique for 235U adjustment. The 235U random 
files are obtained from TENDL-2014, a total number of 5000 samples were used in this 
work. This number seems enough to reach an adequate convergence in BMC [18].The high 
sensitivity of the fission cross section in Godiva shows an increase in fission around +1.4% 
if only Godiva is used in the adjustment. LLNL-pulsed sphere goes in the opposite 
direction, with -1.0%. However, the high-sensitivity in MT91 for the pulsed sphere gives an 
increase up to +2.5%. These changes are dominant in the case of a jointly adjustment. 

BMC technique also predicts “a posteriori” covariances. The Godiva experiment leads 
to a strong reduction of the uncertainty in fission cross-section of around 1.5%. The LLNL -
pulsed sphere only changes the inelastic uncertainty with a reduction of the uncertainty in 
0.6%. In addition, the Godiva experiment leads to a cross-correlation between fission and 
nubar as a consequence of the criticality constraint (see Fig.3-right). However, no cross-
correlation is seen for the LLNL-pulsed sphere (see Fig.3 left). 
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Fig. 2. Results for BMC adjustment, fission (left) and total inelastic (right) cross-sections. The figures 
show the predicted posterior values using experimental adjustments with Godiva(HMF1), LLNL-

pulsed sphere or both benchmarks together divided by prior cross-sections. 

  

Fig. 3. Posteriori correlation matrix using LLNL-235U pulsed sphere (left) and Godiva(right). 

In Table 2, prior and posterior results for keff in criticality, and chi-squared in shielding case 
are shown. It can be concluded that a joint constraint is important to get a better and reliable 
adjustment of nuclear data and for avoiding compensation effects. 

Table 2. Results of BMC adjustment for Godiva and LLNL/235U pulsed sphere Benchmarks. 
Calculations are performed with MCNP-6.1. The keff statistical uncertainty < 10pcm. 

 HMF1/Godiva 
LLNL/235U -0.7mfp 

pulsed sphere 

Margin keff (mean) 
keff (1) due to  

nuclear data unc. 
Total 2 

Prior 0.99504 0.01119 3.52 

A posteriori …only HMF1 0.99992 0.00100 3.69 

A posteriori …only LLNL-235U 0.99146 0.01069 3.13 

A posteriori ...Both HMF1 & LLNL-235U 0.99985 0.00099 3.37 
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4 Conclusion  

Two different examples have been used to demonstrate the importance of Monte Carlo 
techniques in the procedure of evaluation of nuclear data. First, reactor core measurements 
have been used to perform an UQ assessment which can help to assess nuclear data trends 
and determine the main contributors and uncertainty targets for the evaluation procedure. 
The second example has shown the importance of selection of benchmarks in the Bayesian 
approach avoiding as much as possible compensations in the “a posteriori” evaluated data. 
Benchmarks should be selected focusing on an individual isotope, energy range, reaction 
type and different constraints.  
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