
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

Running IceCube GPU simulations on Titan

Vladimir Brik1,∗, David Schultz1, and Gonzalo Merino1

1Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, 222 W Washing-
ton Ave, Suite 500, Madison, WI 53703, USA

Abstract. Here we report IceCube’s first experiences of running GPU simu-
lations on the Titan supercomputer. This undertaking was non-trivial because
Titan is designed for High Performance Computing (HPC) workloads, whereas
IceCube’s workloads fall under the High Throughput Computing (HTC) cat-
egory. In particular: (i) Titan’s design, policies, and tools are geared heav-
ily toward large MPI applications, while IceCube’s workloads consist of large
numbers of relatively small independent jobs, (ii) Titan compute nodes run Cray
Linux, which is not directly compatible with IceCube software, and (iii) Titan
compute nodes cannot access outside networks, making it impossible to access
IceCube’s CVMFS repositories and workload management systems. This report
examines our experience of packaging our application in Singularity containers
and using HTCondor as the second-level scheduler on the Titan supercomputer.

1 Introduction

The IceCube Neutrino Observatory is a neutrino detector located at the South Pole [1]. The
IceCube Collaboration studies the nearly massless subatomic particles called neutrinos of
extra-terrestrial origin. Our research requires a great deal of computational resources, in
particular resources that provide GPU computing capabilities.

Titan is a Cray XK7 supercomputer at Oak Ridge Leadership Computing Facility
(ORLCF) [2]. It has been ranked #7 supercomputer in the world by TOP500 [3] as of June
2018, and it consists of 18,688 compute nodes each equipped with 16-core AMD Opteron
CPU, 32GB RAM, and a Kepler K20X GPU. Titan uses TORQUE [4], Moab [5], and ALPS
[6] for cluster management and operation.

IceCube has been granted a test allocation of 1 million “Titan-hours” (about 33 thousand
GPU hours) under the "ORLCF director’s discretionary allocation" program. Running Ice-
Cube jobs on Titan presented an unusual challenge for us, primarily because (1) worker nodes
have no access to the Internet, (2) worker nodes’ software and hardware are atypical, and (3)
the system as a whole is designed and optimized for running large MPI jobs.

IceCube GPU simulation workloads generally consist of large numbers of independent
single-GPU processes whose running times vary widely and cannot be predicted in advance.
Such workloads are not a natural fit for Titan, whose Portable Batch System (PBS) scheduling
policy is designed to strongly prefer large MPI jobs. Native scheduling tools on Titan are not
designed to efficiently handle large numbers of tasks of highly-variable and unpredictable
durations. Therefore, we decided to use HTCondor [7] as the second-level scheduler.
∗Corresponding author: vbrik@icecube.wisc.edu



2

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

Instead of recompiling IceCube’s software stack for Titan’s Cray OS, which would have
been a daunting task, we decided to use Singularity [8] containers to solve both the problem
of software compatibility and software distribution.

2 Workload

A set of GPU-based photon propagation simulations were chosen as the workload for Titan.
The simulations were part of an effort to collect information about the detector systematics,
in particular understanding the effect of the so-called "hole ice", which is the column of ice
that formed in the drill holes during the construction of the detector, on the particle energy
and direction measured by IceCube. One of the end goals is to generate pre-computed models
that will save GPU compute time in the future.

From the technical perspective, the chosen workload was a good fit for Titan because
(1) all input files could be pre-generated and manually uploaded to Titan, (2) the workflow
was simple, with all simulations being self-contained and straightforward to execute, (3)
computational requirements were a good fit for our capabilities on Titan.

A “simulation” in this context is a single command consisting of a script and its arguments
that would use a single GPU to perform computations. All simulation commands followed
a simple pattern and could be generated in advance. The simulation scripts performed GPU
simulations using standard IceCube software and data available in Open Science Grid’s [9]
CVMFS [10] repository and some custom code.

Run times for all simulations followed a similar long-tailed distribution, with majority of
simulations finishing relatively quickly, and a significant number of long simulations. Simu-
lation run times could not be accurately estimated beforehand. The actual distribution of the
run times is discussed in more detail in Section 4.

3 Approach

The main challenges of running the simulation workload on Titan can be classified across
several dimensions: Creating an execution environment suitable for execution of simulation
scripts. Making IceCube’s software and data available to the simulation scripts. Scheduling
and managing execution of variable-duration simulations inside fixed-duration Titan jobs.
Transferring input and output data to and out of Titan.

At a high level, we took the following approach. Transfer of input and output files was
done manually. A Singularity container was constructed, which could execute the simulation
scripts and run HTCondor daemons. Then, we iterated the following process:

1. A PBS job would be submitted and would initiate the “orchestration scripts”.

2. The orchestration scripts would use the container to set up an HTCondor pool, whose
state (journal, history, etc.) was stored on the Titan’s shared Lustre file system [11].

3. On the central manager/submitter of the pool, the orchestration scripts would either
submit jobs using a pre-generated submit file, and/or load HTCondor state from Lustre.

4. Simulations would be executed by HTCondor inside its container.

5. If the PBS job terminated before (almost) all simulations completed, the process would
be repeated from Step 1, except the with a smaller PBS job (to reflect the reduced
number of remaining simulations), and without providing an HTCondor submit file
(since HTCondor state of the pool’s previous incarnation would be loaded from Lustre).



3

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

Instead of recompiling IceCube’s software stack for Titan’s Cray OS, which would have
been a daunting task, we decided to use Singularity [8] containers to solve both the problem
of software compatibility and software distribution.

2 Workload

A set of GPU-based photon propagation simulations were chosen as the workload for Titan.
The simulations were part of an effort to collect information about the detector systematics,
in particular understanding the effect of the so-called "hole ice", which is the column of ice
that formed in the drill holes during the construction of the detector, on the particle energy
and direction measured by IceCube. One of the end goals is to generate pre-computed models
that will save GPU compute time in the future.

From the technical perspective, the chosen workload was a good fit for Titan because
(1) all input files could be pre-generated and manually uploaded to Titan, (2) the workflow
was simple, with all simulations being self-contained and straightforward to execute, (3)
computational requirements were a good fit for our capabilities on Titan.

A “simulation” in this context is a single command consisting of a script and its arguments
that would use a single GPU to perform computations. All simulation commands followed
a simple pattern and could be generated in advance. The simulation scripts performed GPU
simulations using standard IceCube software and data available in Open Science Grid’s [9]
CVMFS [10] repository and some custom code.

Run times for all simulations followed a similar long-tailed distribution, with majority of
simulations finishing relatively quickly, and a significant number of long simulations. Simu-
lation run times could not be accurately estimated beforehand. The actual distribution of the
run times is discussed in more detail in Section 4.

3 Approach

The main challenges of running the simulation workload on Titan can be classified across
several dimensions: Creating an execution environment suitable for execution of simulation
scripts. Making IceCube’s software and data available to the simulation scripts. Scheduling
and managing execution of variable-duration simulations inside fixed-duration Titan jobs.
Transferring input and output data to and out of Titan.

At a high level, we took the following approach. Transfer of input and output files was
done manually. A Singularity container was constructed, which could execute the simulation
scripts and run HTCondor daemons. Then, we iterated the following process:

1. A PBS job would be submitted and would initiate the “orchestration scripts”.

2. The orchestration scripts would use the container to set up an HTCondor pool, whose
state (journal, history, etc.) was stored on the Titan’s shared Lustre file system [11].

3. On the central manager/submitter of the pool, the orchestration scripts would either
submit jobs using a pre-generated submit file, and/or load HTCondor state from Lustre.

4. Simulations would be executed by HTCondor inside its container.

5. If the PBS job terminated before (almost) all simulations completed, the process would
be repeated from Step 1, except the with a smaller PBS job (to reflect the reduced
number of remaining simulations), and without providing an HTCondor submit file
(since HTCondor state of the pool’s previous incarnation would be loaded from Lustre).

6. As the final step of the campaign, the simulations whose output files were missing or
corrupt were re-run.

Since our workload was comprised of a large number of independent simulations, we ar-
bitrarily divided them into groups, and applied the above process to each group. This allowed
us to take an iterative approach to debugging and fixing problems, and limited the amount of
wasted allocation time a single malfunction could inflict. The trade-off was increased human
overhead and more complicated log analytics.

Details of the approach undertaken are presented in the following subsections.

3.1 Singularity Container

A custom Singularity container image was created to execute simulation scripts and run HT-
Condor on Titan. The container was comprised of:

1. Scientific Linux 6.9 base packages.

2. A 36GB subset of IceCube’s Open Science Grid CVMFS repository.

3. The custom code required by the simulation scripts.

4. Titan-specific Singularity configuration [12].

5. HTCondor 8.7.6 with a small custom configuration file.

6. Miscellaneous Titan-specific fixes and workarounds.

7. Tools for monitoring and debugging.

We have chosen to package IceCube software and data inside the container due to con-
cerns that putting large number of small files that may be accessed simultaneously by hun-
dreds of worker nodes may cause problems for Titan’s shared Lustre file system.

Most of HTCondor configuration was stored on the shared file system. This way, tweaks
to HTCondor configuration did not require changes to the container, which saved a lot of
time.

3.2 Workload Execution

The workload was executed in an HTCondor pool created inside a PBS job ("reservation").
The following procedure was used to actually run simulations on Titan. Note that simu-

lations were executed iteratively, in “stages”, between a few hundred and 25,000 simulations
per stage, with several PBS jobs per stage.

1. An HTCondor submit file was generated for the simulations to be executed in the given
stage (one HTCondor job per simulation).

2. A PBS job was submitted. It was sized (in terms of number of nodes and walltime
limit) roughly to be able to complete the set of simulations in the stage. The script that
submitted the PBS reservation took as arguments (1) a path to the “pool directory” on
the Lustre shared file system where HTCondor state files, logs, as well as files used
for debugging, monitoring, and accounting were kept, and (2), optionally, a path to the
HTCondor submit file.



4

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

3. Once the PBS job was started, it would run the main PBS script that orchestrated the
setup of an HTCondor pool inside the PBS reservation, optionally submit HTCondor
jobs to the pool, and implement a mechanism for shutdown of the pool. The simulations
would then execute in the HTCondor pool until the PBS reservation was terminated,
the pool ran out of jobs, or it was commanded to shutdown, or a problem was detected.

The main HTCondor pool orchestration script used multiple invocations of Titan’s aprun
command to start HTCondor in containers on available execute nodes. Up to 21 apruns were
started, depending on the size of the PBS job. Although up to 50 apruns are permitted on a
Titan service node, a process count ulimit of 200 prevented us from going higher.

HTCondor daemons running on worker nodes were configured using environmental vari-
ables set by the orchestration scripts and a global pool-specific configuration file created by
the orchestration scripts in the pool directory. The configuration file contained certain opti-
mizations, such as an infinite CLAIM_WORKLIFE.

Typically, the PBS job would complete when the orchestrator scripts self-shutdown either
in anticipation of hitting the walltime limit, or a predefined amount of time after the pool ran
out of idle jobs. The remaining simulations would be completed by submitting a smaller PBS
job, this time without a submit file. The intention was to minimize time “wasted” by idle
workers (see Section 5 for reasoning).

The orchestration scripts used files in the pool directory to communicate the state of
the pool and perform coordinated emergency shutdown that was cleaner than just delet-
ing the PBS job. For example: if the pool’s queue ran out of idle jobs, a file called
pool_no_idle_jobs would be created; if a file called pool_kill was detected, all worker
nodes would independently shut themselves down. Similar functionality could be imple-
mented by other means, but, given Titan’s idiosyncrasies, this approach was chosen for its
simplicity.

A fail-safe monitoring script was implemented to trigger pool shutdown if HTCondor on
the central manager malfunctioned. The script ran in the central manager container (a better
design is discussed in Section 5).

To minimize the likelihood of the central manager malfunctioning, it was started by a
dedicated aprun process on an execute node that did not run any simulations. The central
manager could not run on the PBS service node due to severe ulimit constraints on the
number of processes and open files.

3.3 Operations and Monitoring

Real-time resource utilization on each node was monitored and logged to the Lustre shared
file system. These files could be watched from any of Titan’s interactive nodes.

When necessary, interactive monitoring and operation of the central manager and worker
nodes was done by logging in to those containers using ssh from a service node.

Since HTCondor state was stored in Lustre, containerized utilities such as condor_q
could be used to examine the state of the pool from service nodes (it could not be done from
login nodes since Singularity was not available there).

3.4 Data Transfer

Data transfer was accomplished out-of-band, manually, using globus-url-copy. Since
the files on Titan’s Lustre file system are periodically purged, output data was uploaded to
IceCube storage periodically.



5

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

3. Once the PBS job was started, it would run the main PBS script that orchestrated the
setup of an HTCondor pool inside the PBS reservation, optionally submit HTCondor
jobs to the pool, and implement a mechanism for shutdown of the pool. The simulations
would then execute in the HTCondor pool until the PBS reservation was terminated,
the pool ran out of jobs, or it was commanded to shutdown, or a problem was detected.

The main HTCondor pool orchestration script used multiple invocations of Titan’s aprun
command to start HTCondor in containers on available execute nodes. Up to 21 apruns were
started, depending on the size of the PBS job. Although up to 50 apruns are permitted on a
Titan service node, a process count ulimit of 200 prevented us from going higher.

HTCondor daemons running on worker nodes were configured using environmental vari-
ables set by the orchestration scripts and a global pool-specific configuration file created by
the orchestration scripts in the pool directory. The configuration file contained certain opti-
mizations, such as an infinite CLAIM_WORKLIFE.

Typically, the PBS job would complete when the orchestrator scripts self-shutdown either
in anticipation of hitting the walltime limit, or a predefined amount of time after the pool ran
out of idle jobs. The remaining simulations would be completed by submitting a smaller PBS
job, this time without a submit file. The intention was to minimize time “wasted” by idle
workers (see Section 5 for reasoning).

The orchestration scripts used files in the pool directory to communicate the state of
the pool and perform coordinated emergency shutdown that was cleaner than just delet-
ing the PBS job. For example: if the pool’s queue ran out of idle jobs, a file called
pool_no_idle_jobs would be created; if a file called pool_kill was detected, all worker
nodes would independently shut themselves down. Similar functionality could be imple-
mented by other means, but, given Titan’s idiosyncrasies, this approach was chosen for its
simplicity.

A fail-safe monitoring script was implemented to trigger pool shutdown if HTCondor on
the central manager malfunctioned. The script ran in the central manager container (a better
design is discussed in Section 5).

To minimize the likelihood of the central manager malfunctioning, it was started by a
dedicated aprun process on an execute node that did not run any simulations. The central
manager could not run on the PBS service node due to severe ulimit constraints on the
number of processes and open files.

3.3 Operations and Monitoring

Real-time resource utilization on each node was monitored and logged to the Lustre shared
file system. These files could be watched from any of Titan’s interactive nodes.

When necessary, interactive monitoring and operation of the central manager and worker
nodes was done by logging in to those containers using ssh from a service node.

Since HTCondor state was stored in Lustre, containerized utilities such as condor_q
could be used to examine the state of the pool from service nodes (it could not be done from
login nodes since Singularity was not available there).

3.4 Data Transfer

Data transfer was accomplished out-of-band, manually, using globus-url-copy. Since
the files on Titan’s Lustre file system are periodically purged, output data was uploaded to
IceCube storage periodically.

4 Analysis of Results

At the time of writing, 83,988 simulations were executed, producing 2.8TB of output data,
and expending 494,889 Titan-hours, which is equal to 16,496 GPU-hours.

About 0.4% of output files were obviously invalid because they could not be parsed, or
were zero-size. Log analysis showed that most were the result of simulations being killed by
HTCondor because they ran too long or used too much memory. Detection of invalid files
was performed outside of Titan using a simple script. Since processing time and memory
requirements of individual simulations are deterministic, we did not attempt to re-process the
invalid files on Titan.

According to Titan’s accounting, overall, GPUs were in use about 90% of the time. The
following sources of 10% inefficiency can be identified: (1) The time it takes the orchestrator
script to bring up the worker nodes. For some jobs, the time it takes to run condor_submit
(a possibly non-trivial overhead if a lot of jobs are involved, not helped by the fact that
condor_schedd log was stored on Lustre). (2) Time it takes HTCondor to dispatch first jobs
to all worker nodes. (3) Job scheduling overhead. (4) Simulation scripts’ start-up overhead.
(5) Output compression and write-out. (6) Some worker nodes sitting idle if the pool ran out
of jobs. (7) Worker node failures.

According to HTCondor accounting, 5% of time was spent re-running interrupted jobs.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 >30

Fr
ac

tio
n 

of
 jo

bs

Job duration in minutes

Figure 1. Distribution of job durations

HTCondor’s CommittedTime distribution, based on a normalized sub-sample of jobs
that completed successfully, is presented in Figure 1. Note that the rightmost bucket is much
larger than the rest. The average job duration of successful simulations was about 10 minutes,
and the median was a little under 5 minutes. About 10% of jobs were longer than 30 minutes,
and about 1% of jobs were longer than 1 hour.

5 Issues Encountered

Issues with instability were encountered, some of which remain unsolved and/or poorly un-
derstood. All of these involved difficult-to-reproduce malfunctions of containerized pro-
cesses. The worker initialization script would fail with “File not found” error on an existing



6

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

file. The HTCondor worker or central manager setup scripts would fail silently. Some initial-
ization scripts would fail with a segmentation fault in unexpected places. Simulation scripts,
after a period of normal operation, would unexpectedly and repeatedly begin to segfault for
no apparent reason, turning the worker node into a job black hole.

It is likely that many of these have been caused by Titan’s Lustre file system being un-
able to handle a large number of worker nodes concurrently issuing many small I/O opera-
tions. This may partially explain the higher likelihood of errors during initialization of larger
pools (800+ nodes). To mitigate this, worker node initialization has been splayed over time,
frequency of actions involving small I/O operations by the orchestration scripts has been
reduced, and non-essential HTCondor logs have been moved off Lustre.

Other errors were probably a result of inconsistent container state caused by worker nodes
running out of memory, but not killing the entire container. This was mitigated by lowering
the threshold of memory usage at which a job is killed cleanly by HTCondor.

6 Lessons Learned

Perhaps the most important and potentially impactful “lesson” is the confirmation that it could
be highly advantageous to be able to operate an HTCondor central manager that is separate
from the PBS jobs that start-up HTCondor worker nodes. This would greatly simplify orches-
tration scripts and HTCondor job management, improve reliability, and reduce wait times for
Titan resources. For example, the central manager could be a longer-running container, pos-
sibly with access to non-Lustre storage, and not subjected to the severe ulimit restrictions
imposed on the processes running on service nodes.

6.1 Titan Environment

In limited testing using simulations of our workload, GeForce GTX 1080 GPUs were found
to be about 5 times faster than Titan’s Kepler K20x GPUs.

TCP/IP communication between execute nodes and service nodes over Titan’s Infiniband
network is possible. This is not documented in Titan’s User Guide and initially there were
doubts if it would work.

Job wait times on Titan were highly unpredictable. At times there would be thousands of
unused nodes available for many hours, at other times a job requesting about 1000 nodes for
a few hours would spend almost a day waiting in the queue.

PBS job history that is accessible via command line tools is purged every 3 days. How-
ever, older historical data, including per-job GPU utilization, can be requested by contacting
support.

6.2 Workload Characteristics

A number of issues have been caused by unpredictable, highly variable simulation run times,
compounded by their unwieldy, long-tailed distribution. This interacted poorly with Titan’s
inflexible PBS jobs and billing model. At a certain point, an HTCondor pool would run out
of idle jobs to schedule. Some worker nodes would begin to run out of tasks and sit idle
as a result, while others worked on their simulations, resulting in wasted allocation time,
since each reserved worker, idle or busy, has the same cost. Thus, there is a trade-off to be
made: shutdown the pool early, and avoid paying for idle workers, but lose progress made on
still running simulation (and re-run them later), or shutdown late, avoiding redoing too much
of the running simulations later, but pay for potentially large number of idle workers. The
unfavorable nature of the runtime distribution made the optimal decision non-obvious.



7

EPJ Web of Conferences 214, 03024 (2019) https://doi.org/10.1051/epjconf/201921403024
CHEP 2018

file. The HTCondor worker or central manager setup scripts would fail silently. Some initial-
ization scripts would fail with a segmentation fault in unexpected places. Simulation scripts,
after a period of normal operation, would unexpectedly and repeatedly begin to segfault for
no apparent reason, turning the worker node into a job black hole.

It is likely that many of these have been caused by Titan’s Lustre file system being un-
able to handle a large number of worker nodes concurrently issuing many small I/O opera-
tions. This may partially explain the higher likelihood of errors during initialization of larger
pools (800+ nodes). To mitigate this, worker node initialization has been splayed over time,
frequency of actions involving small I/O operations by the orchestration scripts has been
reduced, and non-essential HTCondor logs have been moved off Lustre.

Other errors were probably a result of inconsistent container state caused by worker nodes
running out of memory, but not killing the entire container. This was mitigated by lowering
the threshold of memory usage at which a job is killed cleanly by HTCondor.

6 Lessons Learned

Perhaps the most important and potentially impactful “lesson” is the confirmation that it could
be highly advantageous to be able to operate an HTCondor central manager that is separate
from the PBS jobs that start-up HTCondor worker nodes. This would greatly simplify orches-
tration scripts and HTCondor job management, improve reliability, and reduce wait times for
Titan resources. For example, the central manager could be a longer-running container, pos-
sibly with access to non-Lustre storage, and not subjected to the severe ulimit restrictions
imposed on the processes running on service nodes.

6.1 Titan Environment

In limited testing using simulations of our workload, GeForce GTX 1080 GPUs were found
to be about 5 times faster than Titan’s Kepler K20x GPUs.

TCP/IP communication between execute nodes and service nodes over Titan’s Infiniband
network is possible. This is not documented in Titan’s User Guide and initially there were
doubts if it would work.

Job wait times on Titan were highly unpredictable. At times there would be thousands of
unused nodes available for many hours, at other times a job requesting about 1000 nodes for
a few hours would spend almost a day waiting in the queue.

PBS job history that is accessible via command line tools is purged every 3 days. How-
ever, older historical data, including per-job GPU utilization, can be requested by contacting
support.

6.2 Workload Characteristics

A number of issues have been caused by unpredictable, highly variable simulation run times,
compounded by their unwieldy, long-tailed distribution. This interacted poorly with Titan’s
inflexible PBS jobs and billing model. At a certain point, an HTCondor pool would run out
of idle jobs to schedule. Some worker nodes would begin to run out of tasks and sit idle
as a result, while others worked on their simulations, resulting in wasted allocation time,
since each reserved worker, idle or busy, has the same cost. Thus, there is a trade-off to be
made: shutdown the pool early, and avoid paying for idle workers, but lose progress made on
still running simulation (and re-run them later), or shutdown late, avoiding redoing too much
of the running simulations later, but pay for potentially large number of idle workers. The
unfavorable nature of the runtime distribution made the optimal decision non-obvious.

6.3 Application Design

Since container development iteration speed was slow due to its size, during initial develop-
ment and testing, when changes to the container were made often, the container was stored
unpacked as a directory on Titan. This saved a lot of time.

It is important to have fail-safe mechanisms, and to design orchestration scripts to termi-
nate the PBS job if the pool encounters serious problems in order to minimize the amount of
allocation wasted. Unfortunately, stability issues have only been partially solved at this point,
and there remains a non-trivial probability of a pool failing to start properly, or various sorts
of worker node failures. A possible improvement to the current situation would be to run
more sophisticated independent fail-safe scripts on both the central manager and the service
node, since they each have different failure modes.

7 Conclusion
We conclude that a specialized HPC system like Titan can be effectively used for HPC particle
physics simulation workloads such as IceCube’s. Support for Singularity containers greatly
simplified adopting our application to the new environment. Significant resource utilization
gains would be possible if we had the capability to run HTCondor central manager as a long-
lived service accessible from Titan’s internal network.

8 Acknowledgements
We acknowledge the support from the following agencies: U.S. National Science Foundation-
Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of
Wisconsin Alumni Research Foundation.

References
[1] Halzen, "IceCube A Kilometer-Scale Neutrino Observatory at the South Pole", IAU XXV

General Assembley, Sydney, Australia, 13-26 July 2003, ASP Conf. Series vol 13, p 13-16
[2] Titan supercomputer at Oak Ridge Leadership Computing Facility,

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan
[3] TOP500 Supercomputer Sites, https://www.top500.org
[4] TORQUE Resource Manager, http://www.adaptivecomputing.com/products/torque/
[5] Moab HPC Suite, http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-

suite-enterprise-edition
[6] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, "The application level placement

scheduler", Cray User Group, 2008.
[7] HTCondor project, "HTCondor" [software], version 8.7.6, 2018. Available from

https://research.cs.wisc.edu/htcondor/ [accessed 2018-10-03]
[8] Singularity containers project, "Singularity" [software], version 2.4.1 2018, Available

from https://github.com/sylabs/singularity [accessed 2018-10-03]
[9] R. Pordes et al, "Open Science Grid", J. Phys.: Conf. Ser. 78 012057 (2007)
[10] J. Blomer, P. Buncic, T. Fuhrmann, "CernVM File System project", Proc. of the 1st int.

workshop on Network-aware data management (NDM’11) 49–56 (2011)
[11] Schwan, Philip, “Lustre: Building a file system for 1000-node clusters”, Proceedings of

the 2003 Linux Symposium, vol. 2003.
[12] Singularity Tools for Titan, [software], https://github.com/olcf/SingularityTools/ [ac-

cessed 2018-10-03]


