EPJ Web of Conferences 214, 05019 (2019) https://doi.org/10.1051/epjcont/201921405019
CHEP 2018

Automation and Testing for Simplified Software Deploy-
ment

André Sailer"* and Marko Petrié!**

'CERN, CH-1211 Geneva 23, Switzerland

Abstract. Creating software releases is one of the more tedious occupations
in the life of a software developer. For this purpose we have tried to automate
as many of the repetitive tasks involved as possible from getting the commits
to running the software. For this simplification we rely in large parts on free
collaborative services available around GitHub: issue tracking, code review
(GitHub), continuous integration (Travis-Cl), static code analysis (coverity).
The dependencies and compilers used in the continuous integration are obtained
by mounting CVMES into a docker container. This enables running any desired
compiler version (e.g., gcc 6.2, llvm 3.9) or tool (e.g, clang-format, pylint).
To create tags for the software package the powerful GitHub API is used. A
script was developed that first collates the release notes from the description of
each pull request, commits the release notes file, and finally makes a tag. This
moves the burden of writing release notesfrom the package maintainer to the
individual developer. The deployment of software releases to CVMFS is han-
dled via GitLab-CI. When a tag is made the software is built and automatically
deployed. In this paper we will describe the software infrastructure used for the
iLCSoft and iLCDirac projects, which are used by CLICdp and the ILC detec-
tor collaborations, and give examples of automation which might be useful for
others.

1 Introduction

Sophisticated simulation and reconstruction software is needed to address the detector and
physics issues for the future Compact Linear Collider (CLIC), a high-energy electron—
positron accelerator [1]. Our software suite is developed in the linear collider community and
consists of: detector geometry description using DD4nEep [2—4] which is based on GEaNT [5, 6]
and Roor [7]; the ILCSort framework for reconstruction and analysis based on MArRLIN [8];
the event data model and persistency format LCIO [9, 10]; and the distributed workload and
data management tool ILCDirac [11] based on the DIRAC grid middleware [12]. The simu-
lation and reconstruction software is used to perform detector optimisation [13] and physics
studies [14, 15].

To preserve our agile and pragmatic approach to software development without sacrific-
ing maintainability and code quality, we rely on a number of tools to automate necessary but
tedious tasks as much as possible. Code review is an irreplaceable ingredient of code quality

*e-mail: andre.philippe.sailer@cern.ch
**e-mail: marko.petric @cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 05019 (2019) https://doi.org/10.1051/epjconf/201921405019
CHEP 2018

assurance, but many aspects can be automated before someone has to take a look at new de-
velopments or improvements. Unit-testing, formatting and static analysis can be performed
automatically and thus remove some of the burden from the code reviewer. Further automa-
tion is provided for the creation of release notes and the creation and deployment of software
releases. In the following sections we describe some of the tools that we have adopted into
our workflow that have significantly improved our process of software development. First we
describe tools related to the GitHub environment, which are most straightforward and free
to use for anyone working with open source software. Then we describe tools related to the
GitLab instance available at CERN, and finally some plug-ins available for Jenkins.

2 Continuous Integration with GitHub and Integrated Tools

The commonly developed and maintained software is hosted on GitHub for ease of distri-
bution and developer permission management. Continuous integration (CI) can be easily set
up for any public project on GitHub with various services integrated with that platform. We
have added the use of Travis-CI to the projects we maintain or contribute to: the packages
that make up ILCSort and DD4#uep, which are based on C++, and DIRAC [12] which is based
on Python. The Travis-CI can run the configured tasks for each push, pull request, or as a
weekly cron job.

2.1 ClI for Projects without Dependencies

The simplest use case occurs for projects without, or only with easily available, dependencies.
An example is the Python-based DIRAC software. Listing 1 shows part of the configuration
to execute the CI tasks. In lines 2—4 the requirements are installed with the standard pip
program. This is sufficient to run the unit-tests discovered and executed by py . test (line 9).
In lines 11-12 the documentation is compiled. If warnings occur during the compilation of
the documentations the build is marked as failed, which, for example, ensures that all files are
referred to inside the documentation'. Line 14 contains a command to run the pylint static
code analysis, which is configured to look only for errors, for example the use of undefined
variables or functions.

Lines 15-19 verify that the formatting of the modified lines in a pull request conform
to the DIRAC conventions. A strict enforcement of coding style was only recently added,
therefore large parts of the code base do not yet conform to the style conventions. By only
verifying modified lines of the source code we can enforce the conventions for new files
without having to format the entire code base, which would affect the information of the
revision history for almost every line of code.

The complete Travis-CI configuration and the customised commands it runs can be found
in the DIRAC GitHub repository https://github.com/DIRACGrid/DIRAC in the . travis.yml
file and the travis-ci.d folder. A similar approach to run continuous integration tasks can
be adopted by other projects if the installation is easy and fast and no infrastructure needs to
be provided.

2.2 Cl with CVMFS to Provide Dependencies

For the continuous compilation and testing of the C++ based software, for example DD4Hep,
we first need to provide its dependencies, which include GeanT and Roor and for our use

IThe build in the CI is just for testing, The documentation is automatically deployed with readthedocs.org
and can be found at https://dirac.readthedocs.org

EPJ Web of Conferences 214, 05019 (2019)

CHEP 2018
1 install:
2 - pip install --upgrade setuptools
3 - pip install --upgrade pip
4 - pip install -r requirements.txt
5 script:

- export PYTHONPATH=${PWD%/*}
- 1s $PYTHONPATH

- if [["${CHECK}" == "py.test"]]; then
py.test;
elif [["${CHECK}" == "docs" 1]]; then

sudo apt-get install graphviz; cd docs; SPHINXOPTS=-wsphinxWarnings READTHEDOCS=True make html;
if [-s sphinxWarnings]; then cat sphinxWarnings; echo "Warnings When Creating Doc"; exit 1; fi

elif [["${CHECK}" == "pylint"]]; then
travis_wait 30 .travis.d/runPylint.sh;
elif [["${CHECK}" == "format"]] && [["${TRAVIS_PULL_REQUEST}" != "false"]]; then

git remote add GH https://github.com/DIRACGrid/DIRAC.git;

git fetch --no-tags GH ${TRAVIS_BRANCH};

git branch -vv;

git diff -U® GH/${TRAVIS_BRANCH} | pycodestyle --diff;
fi

Listing 1. Travis-CI Part of the yml setup used for the DIRAC grid middleware

case also parts of ILCSorrt. To access the dependencies, we use the docker service in Travis-
CI and also install CVMFS [16]. This is shown in Listing 2. In lines 1-12 the CVMFS
packages are downloaded, installed, and configured on the virtual machine and finally the
clicdp.cern.ch CVMFS repository is mounted. In lines 14—18, the docker container, that
runs the compilation and unit tests, is executed.

As we can provide any dependency via CVMEFES we can quickly and efficiently compile
and test all of our C++ based software packages on GitHub for each pull request.

2.3 Static Code Analysis with Coverity

Another useful tool that is available free to open source projects hosted on GitHub is the
coverity static code analysis [17]. After registering the project with the service, the anal-
ysis can be run via a cron job in the Travis-CI system. Listing 3 shows how the analysis
result, which is run parallel to a compilation in Travis-CI, is submitted to the coverity system

wget https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest_all.deb
sudo dpkg -i cvmfs-release-latest_all.deb

sudo apt-get update

sudo apt-get install cvmfs cvmfs-config-default

rm -f cvmfs-release-latest_all.deb

wget https://lcd-data.web.cern.ch/lcd-data/CernVM/default.local
sudo mkdir -p /etc/cvmfs

sudo mv default.local /etc/cvmfs/default.local

sudo /etc/init.d/autofs stop

sudo cvmfs_config setup

sudo mkdir -p /cvmfs/clicdp.cern.ch

sudo mount -t cvmfs clicdp.cern.ch /cvmfs/clicdp.cern.ch

docker run -it --name CI_container \
-v $PKGDIR:/Package \
-e COMPILER=$COMPILER \
-v /cvmfs/clicdp.cern.ch:/cvmfs/clicdp.cern.ch \
-d clicdp/slc6-build /bin/bash

Listing 2. Setting up CVMFS with docker inside Travis-CI

https://doi.org/10.1051/epjcont/201921405019

EPJ Web of Conferences 214, 05019 (2019) https://doi.org/10.1051/epjconf/201921405019
CHEP 2018

if [["${TRAVIS_EVENT_TYPE}" == "cron" && "${COMPILER}" == "gcc" 1]]; then
export COVERITY_REPO="echo ${TRAVIS_REPO_SLUG} | sed 's/\//\%2F/g'"
wget https://scan.coverity.com/download/linux64 \
--post-data "token=${COVERITY_SCAN_TOKEN}&project=${COVERITY_REPO}"\
-0 Package/coverity_tool.tgz; \
cd Package; mkdir cov-analysis-linux64; \
tar -xf coverity_tool.tgz -C cov-analysis-linux64 --strip-components=2;
curl --form token=${COVERITY_SCAN_TOKEN} --form email=noreply@cern.ch \
--form file=@${PKGDIR}/build/myproject.tgz --form version="master" \
--form description="${description}" \
https://scan.coverity.com/builds?project=${COVERITY_REPO} ;
fi

Listing 3. Submitting new build information to the coverity static analysis service in a cron job on
Travis-CI

Outstanding vs Fixed defects over period of time
200

150
—&— Fixed
defects
—&— Outstan...

100
50

0
N D217F M A M J J A S O N D28F M A M J

Figure 1. Defect density in DD4HEp over time

for analysis. The discovered defects can be browsed by persons authorised by the project
maintainers.

Figure 1 shows the number of outstanding and the cumulative number of fixed defects in
DD4uep over time. Whenever a new defect is found, an email is sent to the members of the
project, and usually significant defects are quickly fixed, as can be seen by the bump in the
outstanding defects in March and April of 2018, shown in Figure 1.

3 Continuous Integration with GitLab

The continuous integration tasks running on GitHub integrated services can also be run in
a similar fashion on the CERN GitLab instance, however the access cannot be as easily ob-
tained as on GitHub. One advantage of using an in-house deployed tool is that tasks requir-
ing privileges can be executed. For our ILCDirAc [11] extension of DIRAC we run the same
checks as for DIRAC, but in addition we can automatically deploy the documentation as a
website, and publish the client installation to our CVMES repository.

3.1 Continuous Deployment to CVMFS with GitLab

To deploy our software releases and required dependencies we are using a ssh based
gitlab-runner to connect to the CVMFS stratum 0. Many of our projects are using the

4

EPJ Web of Conferences 214, 05019 (2019) https://doi.org/10.1051/epjcont/201921405019
CHEP 2018

same runner, but as we do not allow the execution of jobs in parallel, GitLab-ClI is responsi-
ble for scheduling the tasks one after the other. In case the same project has more than one
active pipeline to publish to CVMFS any redundant pipeline not yet in the deploy stage will
be cancelled. This mostly happens for the continuous deployment of the HEAD installations
of ILCSort, when multiple packages trigger a new build of the software suite simultaneously.

4 Code Quality Monitoring with JenkinsClI

While the GitLab-CI is easy to configure and use, and allows pass—fail level checks for pull
requests, the JenkinsCI software allows one to install a wide variety of plug-ins that can be
used to monitor the code quality over time.

While our goal is to remove all compiler warnings — and once this is achieved for one of
our packages it will be enforced with -Werror in CI compilations — the Warnings plug-in for
Jenkins provides an overview of the existing warnings, and allows one to browse the source
code where the warnings occur. Similar functionality is provided by the clang scan-build
plug-in, which allows one to monitor the reports provided by the clang scan-build tool. The
final plug-in we make use of is the Valgrind plug-in for the valgrind mem-check [18] tool
to find memory leaks or errors. These three plug-ins also offer a graphical representation.
Figure 2 shows the trend of the warnings (left), bugs (middle), and issues affecting memory
(right). The valgrind plug-in allows one in addition to set thresholds of acceptable number
of lost bytes. If these thresholds are exceeded, the build is marked as unstable or failed. The
nightly running and analysis of the valgrind output greatly reduces the burden on the release
manager and decreases the danger of releasing faulty software. As can be seen in the right
graph of Figure 2, the spike in definitely lost memory was identified and fixed in the following
day.

5 Leveraging APIs

Both GitHub and GitLab offer programmable access to their functionality. We use the APIs
to access the pull requests and their content or comments, and to create new releases.

5.1 Release Notes

Release notes should contain the new developments for new versions of the software. To
spread the burden of writing release notes and for simplification we moved the drafting of
release notes to the comments accompanying each pull request. Each pull request should
contain a brief statement explaining its new features or bugfixes. The release notes are writ-
ten between BEGINRELEASENOTES ENDRELEASENOTES and parsed by a script accessing the infor-
mation via the APIs. All pull requests that occurred between the last tag on a given branch
are selected and parsed. Depending on the preferences of the maintainers the release notes
can be sorted, for example by pull requests or sub-system. An example of a script using the
GitHub API can be found in the DIRAC repository” and a script using the GitLab API in the
ILCDIRAC repository?.

This approach has the advantage of directly asking contributors to add release notes to
their pull requests. It also avoids merge conflicts, that would be almost guaranteed if every
contributor were to modify a release notes file by themselves.

The output from the collation of the release notes can be further formatted, manually
committed into a release notes file, or used in the meta data of tags made in GitHub or
GitLab. It is also possible to automate the manual steps, as described in the next section.

2https:// github.com/DIRACGrid/DIRAC/blob/integration/docs/Tools/GetReleaseNotes.py
3https:// gitlab.cern.ch/CLICdp/iLCDirac/ILCDIRAC/blob/Rel-v29r0/docs/GetReleaseNotes.py

EPJ Web of Conferences 214, 05019 (2019) https://doi.org/10.1051/epjconf/201921405019
CHEP 2018

§ et 2
Y 3l
g :g;‘ B SO SRY /SSSSOS
O T O
Y 0 - -~
OS d | a & a E] =] a g % % % i g % i‘ % %
E: e ¥ ¥ e E: E E E: * Build Number
= Data races
— Helgrind misc
~— lllegal system calls
" Megal/ mismatched frees
E ~ Invalid reads/ writes
% ~— Leaks (definitely lost)
,E Leaks (possibly lost)
g Lock order
— Overlaps
Pthread API

Uninitialized value/ cond.

—— Unlock issues

Figure 2. Trend graphs from different plug-ins for Jenkins: compiler warnings, clang scan-build, val-
grind mem-check

5.2 Creation of New Software Releases

For the complex releases of ILCSorr which contains more than 30 separate packages, we
create a tagger script®, that uses the GitHub API to first create release notes for each package,
directly commits the release notes into the project and then makes a tag with an incremented
version. If no modifications have been done in the package with respect to a prior version no
new tag is created. While the specific implementation makes use of conventions for ILCSorr
the general idea can be adapted to other projects.

6 Conclusions

The combination of continuous integration and continuous deployment has immensely sped
up the round trip time from changes in our detector simulation or improvements in the re-
construction algorithms to large scale validation samples. The automation of the testing,
validation, and deployment increased the reliability of the release procedure and of the re-
lease software product considerably, while at the same time increasing the productivity of the
librarians.

Disclaimer

All product and company names are trademarks or registered trademarks of their respective
holders. Use of them does not imply any affiliation with or endorsement by them.

4https:// github.com/iLCSoft/iLCInstall/blob/master/scripts/ilcsofttagger.py

EPJ Web of Conferences 214, 05019 (2019) https://doi.org/10.1051/epjcont/201921405019
CHEP 2018

References

[1] P. Burrows et al., eds., Updated baseline for a staged Compact Linear Collider (CERN,
2016), http://dx.doi.org/10.5170/CERN-2016-004
[2] M. Frank, F. Gaede, M. Petric, A. Sailer, DD4hep (2018),
https://doi.org/10.5281/zenodo. 592244
[3] M. Petric, M. Frank, F. Gaede, S. Lu, N. Nikiforou, A. Sailer, J. Phys. Conf. Ser. 898,
042015 (2016), https://doi.org/10.1088/1742-6596/898/4/042017
[4] M. Frank, F. Gaede, C. Grefe, P. Mato, J. Phys. Conf. Ser. 513, 022010 (2013),
https://doi.org/10.1088/1742-6596/513/2/022010
[5] S. Agostinelli et al., Nucl. Inst. & Meth. A506, 250 (2003),
https://doi.org/10.1016/S0168-9002(03)01368-8
[6] J. Allison et al., IEEE T. Nucl. Sci. 53, 270 (2006),
https://doi.org/10.1109/MASS.1995.528223
[7]1 F. Rademakers et al., root (2018), https://doi.org/10.5281/zenodo.848818
[8] F. Gaede, Nucl. Inst. & Meth. AS559, 177 (2000),
http://dx.doi.org/10.1016/j.nima.2005.11.138
[9] F. Gaede, T. Behnke, R. Cassell, N. Graf, T. Johnson, H. Vogt, LCIO persistency and
data model for LC simulation and reconstruction, in CHEP 2004 (Interlaken, Switzer-
land, 2004)
[10] F. Gaede, T. Behnke, N. Graf, T. Johnson, LCIO — A persistency framework for linear
collider simulation studies, in CHEP 2003 (La Jolla, California, 2003)
[11] C. Grefe, S. Poss, A. Sailer, A. Tsaregorodtsev, J. Phys. Conf. Ser. 513, 032077 (2013),
CLICdp-Conf-2013-003, https://doi.org/10.1088/1742-6596/513/3/032077
[12] F. Stagni et al., DIRAC (2018), https://doi.org/10.5281/zenodo. 1451646
[13] N. Alipour Tehrani et al., CLICdet: The post-CDR CLIC detector model (2017),
CLICdp-Note-2017-001, http://cds.cern.ch/record/2254048
[14] CLICdp Collaboration, Eur. Phys. J. C 717, 475 (2017,
https://doi.org/10.1140/epjc/s10052-017-4968-5
[15] CLICdp Collaboration (CLICdp), Top-Quark Physics at the CLIC Electron-Positron
Linear Collider (2018), https://arxiv.org/abs/1807.02441
[16] J. Blomer et al., The CernVM file system (2018),
https://doi.org/10.5281/zenodo.1010441
[17] https://scan.coverity.com/
[18] J. Seward, N. Nethercote, Using Valgrind to detect undefined value errors with bit-
precision, in Proceedings of the USENIX 05 Annual Technical Conference (Anaheim,
California, USA, 2005)

